-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
192 lines (168 loc) · 6.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import time
import torch
import subprocess
from PIL import Image
from typing import List
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline
)
from torchvision import transforms
from weights import WeightsDownloadCache
from transformers import CLIPImageProcessor
MAX_IMAGE_SIZE = 1440
MODEL_CACHE = "FLUX.1-schnell"
FEATURE_EXTRACTOR = "/src/feature-extractor"
MODEL_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-schnell/files.tar"
def download_weights(url, dest, file=False):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
if not file:
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
else:
subprocess.check_call(["pget", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
start = time.time()
self.weights_cache = WeightsDownloadCache()
self.last_loaded_lora = None
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
print("Loading Flux txt2img Pipeline")
if not os.path.exists("FLUX.1-schnell"):
download_weights(MODEL_URL, ".")
self.txt2img_pipe = FluxPipeline.from_pretrained(
MODEL_CACHE,
torch_dtype=torch.bfloat16
).to("cuda")
print("Loading Flux img2img pipeline")
self.img2img_pipe = FluxImg2ImgPipeline(
transformer=self.txt2img_pipe.transformer,
scheduler=self.txt2img_pipe.scheduler,
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
text_encoder_2=self.txt2img_pipe.text_encoder_2,
tokenizer=self.txt2img_pipe.tokenizer,
tokenizer_2=self.txt2img_pipe.tokenizer_2,
).to("cuda")
print("setup took: ", time.time() - start)
def get_image(self, image: str):
image = Image.open(image).convert("RGB")
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
)
img: torch.Tensor = transform(image)
return img[None, ...]
@staticmethod
def make_multiple_of_16(n):
return ((n + 15) // 16) * 16
@torch.inference_mode()
def predict(
self,
prompt: str = Input(
description="Prompt for generated image",
default="a tiny astronaut hatching from an egg on the moon"
),
image: Path = Input(
description="Input image for image to image mode. The aspect ratio of your output will match this image",
default=None,
),
width: int = Input(
description="Width of output image",
default=1024
),
height: int = Input(
description="Height of output image",
default=1024
),
strength: float = Input(
description="Prompt strength (or denoising strength) when using image to image. 1.0 corresponds to full destruction of information in image.",
ge=0,le=1,default=0.8,
),
num_outputs: int = Input(
description="Number of images to output.",
ge=1,
le=4,
default=1,
),
num_inference_steps: int = Input(
description="Number of inference steps",
ge=1,le=12,default=4,
),
seed: int = Input(description="Random seed. Set for reproducible generation", default=None),
output_format: str = Input(
description="Format of the output images",
choices=["webp", "jpg", "png"],
default="png",
),
output_quality: int = Input(
description="Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs",
default=100,
ge=0,
le=100,
)
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
max_sequence_length = 256
guidance_scale = 0.0
flux_kwargs = {}
print(f"Prompt: {prompt}")
device = self.txt2img_pipe.device
if image:
pipe = self.img2img_pipe
print("img2img mode")
init_image = self.get_image(image)
width = init_image.shape[-1]
height = init_image.shape[-2]
print(f"Input image size: {width}x{height}")
# scaling factor
scale = min(MAX_IMAGE_SIZE / width, MAX_IMAGE_SIZE / height, 1)
if scale < 1:
width = int(width * scale)
height = int(height * scale)
print(f"Scaling image down to {width}x{height}")
# Round to nearest multiple of 16
width = self.make_multiple_of_16(width)
height = self.make_multiple_of_16(height)
print(f"Input image size set to: {width}x{height}")
init_image = init_image.to(device)
init_image = torch.nn.functional.interpolate(init_image, (height, width))
init_image = init_image.to(torch.bfloat16)
flux_kwargs["image"] = init_image
flux_kwargs["strength"] = strength
else:
print("txt2img mode")
pipe = self.txt2img_pipe
generator = torch.Generator("cuda").manual_seed(seed)
flux_kwargs["width"] = width
flux_kwargs["height"] = height
common_args = {
"prompt": [prompt] * num_outputs,
"guidance_scale": guidance_scale,
"generator": generator,
"num_inference_steps": num_inference_steps,
"max_sequence_length": max_sequence_length,
"output_type": "pil"
}
output = pipe(**common_args, **flux_kwargs)
output_paths = []
for i, image in enumerate(output.images):
output_path = f"/tmp/out-{i}.{output_format}"
if output_format != 'png':
image.save(output_path, quality=output_quality, optimize=True)
else:
image.save(output_path)
output_paths.append(Path(output_path))
return output_paths