-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
76 lines (69 loc) · 2.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 22 19:39:41 2022
@author: Keerthika
"""
import numpy as np
from flask import Flask, request, jsonify
import pickle
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
model = pickle.load(open('model.pkl', 'rb'))
print('model is loaded')
app = Flask(__name__)
dataset = pd.read_csv('Wellbeing_and_lifestyle_data_Kaggle.csv')
@app.route('/',methods=['GET'])
def index():
FRUITS_VEGGIES=float(request.args['FRUITS_VEGGIES'])
DAILY_STRESS=float(request.args['DAILY_STRESS'])
PLACES_VISITED=float(request.args['PLACES_VISITED'])
CORE_CIRCLE=float(request.args['CORE_CIRCLE'])
SUPPORTING_OTHERS=float(request.args['SUPPORTING_OTHERS'])
SOCIAL_NETWORK=float(request.args['SOCIAL_NETWORK'])
ACHIEVEMENT=float(request.args['ACHIEVEMENT'])
DONATION=float(request.args['DONATION'])
BMI_RANGE=float(request.args['BMI_RANGE'])
TODO_COMPLETED=float(request.args['TODO_COMPLETED'])
FLOW=float(request.args['FLOW'])
DAILY_STEPS=float(request.args['DAILY_STEPS'])
LIVE_VISION=float(request.args['LIVE_VISION'])
SLEEP_HOURS=float(request.args['SLEEP_HOURS'])
LOST_VACATION=float(request.args['LOST_VACATION'])
DAILY_SHOUTING=float(request.args['DAILY_SHOUTING'])
SUFFICIENT_INCOME=float(request.args['SUFFICIENT_INCOME'])
PERSONAL_AWARDS=float(request.args['PERSONAL_AWARDS'])
TIME_FOR_PASSION=float(request.args['TIME_FOR_PASSION'])
WEEKLY_MEDITATION=float(request.args['WEEKLY_MEDITATION'])
AGE=str(request.args['AGE'])
GENDER=float(request.args['GENDER'])
X = dataset.iloc[:, 1:-1].values
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [-2])], remainder='passthrough')
X = np.array(ct.fit_transform(X))
test=[[FRUITS_VEGGIES,
DAILY_STRESS,
PLACES_VISITED,
CORE_CIRCLE,
SUPPORTING_OTHERS,
SOCIAL_NETWORK,
ACHIEVEMENT,
DONATION,
BMI_RANGE,
TODO_COMPLETED,
FLOW,
DAILY_STEPS,
LIVE_VISION,
SLEEP_HOURS,
LOST_VACATION,
DAILY_SHOUTING,
SUFFICIENT_INCOME,
PERSONAL_AWARDS,
TIME_FOR_PASSION,
WEEKLY_MEDITATION,
AGE,
GENDER]]
test=ct.transform(test)
pred=model.predict(test)
return jsonify(prediction=str(round(pred[0],2)))
if __name__ == "__main__":
app.run(debug=True)