-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmatmul.impala
171 lines (144 loc) · 4.66 KB
/
matmul.impala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
struct Mat {
rows : fn() -> i32,
cols : fn() -> i32,
read : fn(i32, i32) -> f32,
write : fn(i32, i32, f32) -> (),
}
fn @get_mat(buf: Buffer, rows: i32, cols: i32) = Mat {
rows = @|| rows,
cols = @|| cols,
read = @|x, y| { bitcast[&[f32], ](buf.data)(y * cols + x) },
write = @|x, y, v| { bitcast[&mut[f32]](buf.data)(y * cols + x) = v },
};
fn matmul_golden(C: Mat, A: Mat, B: Mat) -> () {
for i in range(0, C.rows()) {
for k in range(0, C.cols()) {
let mut sum = 0:f32;
for j in range(0, A.cols()) {
sum += A.read(j, i) * B.read(k, j);
}
C.write(k, i, sum);
}
}
}
fn matmul_hand_tiled(C: Mat, A: Mat, B: Mat) -> () {
// initialize C with zeros
for y in range(0, C.rows()) {
for x in range(0, C.cols()) {
C.write(x, y, 0:f32);
}
}
// tiling parameter
let bs = 256;
for i0 in range_step(0, C.rows(), bs) {
for k0 in range_step(0, C.cols(), bs) {
for j0 in range_step(0, A.cols(), bs) {
for i in range(i0, min(i0 + bs, C.rows())) {
for k in range(k0, min(k0 + bs, C.cols())) {
let mut sum = C.read(k, i);
for j in range(j0, min(j0 + bs, A.cols())) {
sum += A.read(j, i) * B.read(k, j);
}
C.write(k, i, sum);
}
}
}
}
}
}
fn matmul_auto_tiled(C: Mat, A: Mat, B: Mat) -> () {
fn tiled_matmul() -> () {
fn @get_step(lvl: i32) -> i32 { // size -> 256 -> 64 -> 1
if lvl == 0 { 256 } else if lvl == 1 { 64 } else { 1 }
}
fn @(?cur_lvl) tile(cur_lvl: i32, il: i32, iu: i32, kl: i32, ku: i32, jl: i32, ju: i32) -> () {
let step = get_step(cur_lvl);
pe_info[i32]("step size", step);
if step == 1 {
for i in range(il, min(iu, C.rows())) {
for k in range(kl, min(ku, C.cols())) {
let mut sum = C.read(k, i);
for j in range(jl, min(ju, A.cols())) {
sum += A.read(j, i) * B.read(k, j);
}
C.write(k, i, sum);
}
}
} else {
for i in range_step(il, iu, step) {
for k in range_step(kl, ku, step) {
for j in range_step(jl, ju, step) {
tile(cur_lvl + 1, i, i + step, k, k + step, j, j + step);
}
}
}
}
}
tile(0, 0, C.rows(), 0, C.cols(), 0, A.cols());
}
// initialize C with zeros
for y in range(0, C.rows()) {
for x in range(0, C.cols()) {
C.write(x, y, 0:f32);
}
}
tiled_matmul()
}
#[export]
fn main() -> i32 {
let l = 512;
let m = 1024;
let n = 2048;
let A_buf = alloc_cpu((l * m) as i64 * sizeof[f32]()); // mxl
let B_buf = alloc_cpu((m * n) as i64 * sizeof[f32]()); // nxm
let C_buf = alloc_cpu((l * n) as i64 * sizeof[f32]()); // nxl
let R_buf = alloc_cpu((l * n) as i64 * sizeof[f32]()); // nxl
let A = get_mat(A_buf, l, m); // mxl
let B = get_mat(B_buf, m, n); // nxm
let C = get_mat(C_buf, l, n); // nxl
let R = get_mat(R_buf, l, n); // nxl
init_rand(bitcast[&mut[f32]](A_buf.data), A.cols(), A.rows());
init_rand(bitcast[&mut[f32]](B_buf.data), B.cols(), B.rows());
let nops = 2 as i64 * l as i64 * m as i64 * n as i64;
fn print_gflops(time: i64) -> () {
print_string("Timing: ");
print_f64(time as f64 / 1000:f64);
print_string(" ms\n");
let gflops = (1.0e-9 * nops as f64) / (time as f64 * 1.0e-6);
print_f64(gflops);
print_string(" GFLOPS\n")
}
fn bench_fun(fun: fn() -> ()) = @|| {
let start = get_micro_time();
fun();
let end = get_micro_time();
print_gflops(end - start);
};
for bench_fun() {
matmul_golden(R, A, B);
}
for bench_fun() {
matmul_hand_tiled(C, A, B);
}
for bench_fun() {
matmul_auto_tiled(C, A, B);
}
let mut passed = 0;
for y in range(0, C.rows()) {
for x in range(0, C.cols()) {
if C.read(x, y) != R.read(x, y) {
passed++;
}
}
}
if passed == 0 {
print_string("Test PASSED!\n");
} else {
print_string("Test FAILED!\n");
}
release(A_buf);
release(B_buf);
release(C_buf);
release(R_buf);
passed
}