-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtrain_one_shot_learning_matching_network.py
114 lines (97 loc) · 6.56 KB
/
train_one_shot_learning_matching_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from one_shot_learning_network import *
from experiment_builder import ExperimentBuilder
import tensorflow.contrib.slim as slim
import data as dataset
import tqdm
from utils.parser_utils import get_args
from utils.storage import save_statistics, build_experiment_folder
tf.reset_default_graph()
args = get_args()
# Experiment builder
data = dataset.FolderDatasetLoader(num_of_gpus=1, batch_size=args.batch_size, image_height=28, image_width=28,
image_channels=1,
train_val_test_split=(1200/1622, 211/1622, 211/1622),
samples_per_iter=1, num_workers=4,
data_path="datasets/omniglot_dataset", name="omniglot_dataset",
indexes_of_folders_indicating_class=[-2, -3], reset_stored_filepaths=False,
num_samples_per_class=args.samples_per_class,
num_classes_per_set=args.classes_per_set, label_as_int=False)
experiment = ExperimentBuilder(data)
one_shot_omniglot, losses, c_error_opt_op, init = experiment.build_experiment(args.batch_size,
args.classes_per_set,
args.samples_per_class,
args.use_full_context_embeddings,
full_context_unroll_k=
args.full_context_unroll_k,
args=args)
total_train_batches = args.total_iter_per_epoch
total_val_batches = args.total_iter_per_epoch
total_test_batches = args.total_iter_per_epoch
saved_models_filepath, logs_filepath = build_experiment_folder(args.experiment_title)
save_statistics(logs_filepath, ["epoch", "total_train_c_loss_mean", "total_train_c_loss_std",
"total_train_accuracy_mean", "total_train_accuracy_std", "total_val_c_loss_mean",
"total_val_c_loss_std", "total_val_accuracy_mean", "total_val_accuracy_std",
"total_test_c_loss_mean", "total_test_c_loss_std", "total_test_accuracy_mean",
"total_test_accuracy_std"], create=True)
# Experiment initialization and running
with tf.Session() as sess:
sess.run(init)
train_saver = tf.train.Saver()
val_saver = tf.train.Saver()
if args.continue_from_epoch != -1: #load checkpoint if needed
checkpoint = "saved_models/{}_{}.ckpt".format(args.experiment_title, args.continue_from_epoch)
variables_to_restore = []
for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
print(var)
variables_to_restore.append(var)
tf.logging.info('Fine-tuning from %s' % checkpoint)
fine_tune = slim.assign_from_checkpoint_fn(
checkpoint,
variables_to_restore,
ignore_missing_vars=True)
fine_tune(sess)
start_epoch = args.continue_from_epoch if args.continue_from_epoch != -1 else 0
best_val_acc_mean = 0.
best_val_epoch = 6
with tqdm.tqdm(total=args.total_epochs) as pbar_e:
for e in range(start_epoch, args.total_epochs):
total_train_c_loss_mean, total_train_c_loss_std, total_train_accuracy_mean, total_train_accuracy_std =\
experiment.run_training_epoch(total_train_batches=total_train_batches,
sess=sess)
print("Epoch {}: train_loss_mean: {}, train_loss_std: {}, train_accuracy_mean: {}, train_accuracy_std: {}"
.format(e, total_train_c_loss_mean, total_train_c_loss_std, total_train_accuracy_mean, total_train_accuracy_std))
total_val_c_loss_mean, total_val_c_loss_std, total_val_accuracy_mean, total_val_accuracy_std = \
experiment.run_validation_epoch(total_val_batches=total_val_batches,
sess=sess)
print("Epoch {}: val_loss_mean: {}, val_loss_std: {}, val_accuracy_mean: {}, val_accuracy_std: {}"
.format(e, total_val_c_loss_mean, total_val_c_loss_std, total_val_accuracy_mean,
total_val_accuracy_std))
if total_val_accuracy_mean >= best_val_acc_mean: #if new best val accuracy -> produce test statistics
best_val_acc_mean = total_val_accuracy_mean
best_val_epoch = e
val_save_path = val_saver.save(sess, "{}/best_val_{}_{}.ckpt".format(saved_models_filepath, args.experiment_title, e))
total_test_c_loss_mean, total_test_c_loss_std, total_test_accuracy_mean, total_test_accuracy_std \
= -1, -1, -1, -1
save_statistics(logs_filepath,
[e, total_train_c_loss_mean, total_train_c_loss_std, total_train_accuracy_mean,
total_train_accuracy_std, total_val_c_loss_mean, total_val_c_loss_std,
total_val_accuracy_mean, total_val_accuracy_std,
total_test_c_loss_mean, total_test_c_loss_std, total_test_accuracy_mean,
total_test_accuracy_std])
save_path = train_saver.save(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, args.experiment_title, e))
pbar_e.update(1)
val_saver.restore(sess,
"{}/best_val_{}_{}.ckpt".format(saved_models_filepath, args.experiment_title, best_val_epoch))
total_test_c_loss_mean, total_test_c_loss_std, total_test_accuracy_mean, total_test_accuracy_std = \
experiment.run_testing_epoch(total_test_batches=total_test_batches,
sess=sess)
print(
"Epoch {}: test_loss_mean: {}, test_loss_std: {}, test_accuracy_mean: {}, test_accuracy_std: {}"
.format(best_val_epoch, total_test_c_loss_mean, total_test_c_loss_std, total_test_accuracy_mean,
total_test_accuracy_std))
save_statistics(logs_filepath,
["Test error on best validation model", -1, -1, -1,
-1, -1, -1,
-1, -1,
total_test_c_loss_mean, total_test_c_loss_std, total_test_accuracy_mean,
total_test_accuracy_std])