-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathone_shot_learning_network.py
334 lines (289 loc) · 17.8 KB
/
one_shot_learning_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import tensorflow as tf
import tensorflow.contrib.rnn as rnn
from tensorflow.python.ops.nn_ops import max_pool, leaky_relu
class g_embedding_bidirectionalLSTM:
def __init__(self, name, layer_sizes, batch_size):
"""
Initializes a multi layer bidirectional LSTM
:param layer_sizes: A list containing the neuron numbers per layer e.g. [100, 100, 100] returns a 3 layer, 100
neuron bid-LSTM
:param batch_size: The experiments batch size
"""
self.reuse = False
self.batch_size = batch_size
self.layer_sizes = layer_sizes
self.name = name
def __call__(self, inputs, training=False):
"""
Runs the bidirectional LSTM, produces outputs and saves both forward and backward states as well as gradients.
:param inputs: The inputs should be a list of shape [sequence_length, batch_size, 64]
:param name: Name to give to the tensorflow op
:param training: Flag that indicates if this is a training or evaluation stage
:return: Returns the LSTM outputs, as well as the forward and backward hidden states.
"""
with tf.variable_scope(self.name, reuse=self.reuse):
with tf.variable_scope("encoder"):
fw_lstm_cells_encoder = [rnn.LSTMCell(num_units=self.layer_sizes[i], activation=tf.nn.tanh)
for i in range(len(self.layer_sizes))]
bw_lstm_cells_encoder = [rnn.LSTMCell(num_units=self.layer_sizes[i], activation=tf.nn.tanh)
for i in range(len(self.layer_sizes))]
outputs, output_state_fw, output_state_bw = rnn.stack_bidirectional_rnn(
fw_lstm_cells_encoder,
bw_lstm_cells_encoder,
inputs,
dtype=tf.float32
)
print("g out shape", tf.stack(outputs, axis=1).get_shape().as_list())
self.reuse = True
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
return outputs
class f_embedding_bidirectionalLSTM:
def __init__(self, name, layer_size, batch_size):
"""
Initializes a multi layer bidirectional LSTM
:param layer_sizes: A list containing the neuron numbers per layer e.g. [100, 100, 100] returns a 3 layer, 100
neuron bid-LSTM
:param batch_size: The experiments batch size
"""
self.reuse = False
self.batch_size = batch_size
self.layer_size = layer_size
self.name = name
def __call__(self, support_set_embeddings, target_set_embeddings, K, training=False):
"""
Runs the bidirectional LSTM, produces outputs and saves both forward and backward states as well as gradients.
:param inputs: The inputs should be a list of shape [sequence_length, batch_size, 64]
:param name: Name to give to the tensorflow op
:param training: Flag that indicates if this is a training or evaluation stage
:return: Returns the LSTM outputs, as well as the forward and backward hidden states.
"""
b, k, h_g_dim = support_set_embeddings.get_shape().as_list()
b, h_f_dim = target_set_embeddings.get_shape().as_list()
with tf.variable_scope(self.name, reuse=self.reuse):
fw_lstm_cells_encoder = rnn.LSTMCell(num_units=self.layer_size, activation=tf.nn.tanh)
attentional_softmax = tf.ones(shape=(b, k)) * (1.0/k)
h = tf.zeros(shape=(b, h_g_dim))
c_h = (h, h)
c_h = (c_h[0], c_h[1] + target_set_embeddings)
for i in range(K):
attentional_softmax = tf.expand_dims(attentional_softmax, axis=2)
attented_features = support_set_embeddings * attentional_softmax
attented_features_summed = tf.reduce_sum(attented_features, axis=1)
c_h = (c_h[0], c_h[1] + attented_features_summed)
x, h_c = fw_lstm_cells_encoder(inputs=target_set_embeddings, state=c_h)
attentional_softmax = tf.layers.dense(x, units=k, activation=tf.nn.softmax, reuse=self.reuse)
self.reuse = True
outputs = x
print("out shape", tf.stack(outputs, axis=0).get_shape().as_list())
self.reuse = True
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
print(self.variables)
return outputs
class DistanceNetwork:
def __init__(self):
self.reuse = False
def __call__(self, support_set, input_image, name, training=False):
"""
This module calculates the cosine distance between each of the support set embeddings and the target
image embeddings.
:param support_set: The embeddings of the support set images, tensor of shape [sequence_length, batch_size, 64]
:param input_image: The embedding of the target image, tensor of shape [batch_size, 64]
:param name: Name of the op to appear on the graph
:param training: Flag indicating training or evaluation (True/False)
:return: A tensor with cosine similarities of shape [batch_size, sequence_length, 1]
"""
with tf.name_scope('distance-module' + name), tf.variable_scope('distance-module', reuse=self.reuse):
eps = 1e-10
similarities = []
for support_image in tf.unstack(support_set, axis=0):
sum_support = tf.reduce_sum(tf.square(support_image), 1, keep_dims=True)
support_magnitude = tf.rsqrt(tf.clip_by_value(sum_support, eps, float("inf")))
dot_product = tf.matmul(tf.expand_dims(input_image, 1), tf.expand_dims(support_image, 2))
dot_product = tf.squeeze(dot_product, [1, ])
cosine_similarity = dot_product * support_magnitude
similarities.append(cosine_similarity)
similarities = tf.concat(axis=1, values=similarities)
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='distance-module')
return similarities
class AttentionalClassify:
def __init__(self):
self.reuse = False
def __call__(self, similarities, support_set_y, name, training=False):
"""
Produces pdfs over the support set classes for the target set image.
:param similarities: A tensor with cosine similarities of size [sequence_length, batch_size, 1]
:param support_set_y: A tensor with the one hot vectors of the targets for each support set image
[sequence_length, batch_size, num_classes]
:param name: The name of the op to appear on tf graph
:param training: Flag indicating training or evaluation stage (True/False)
:return: Softmax pdf
"""
with tf.name_scope('attentional-classification' + name), tf.variable_scope('attentional-classification',
reuse=self.reuse):
preds = tf.squeeze(tf.matmul(tf.expand_dims(similarities, 1), support_set_y))
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='attentional-classification')
return preds
class Classifier:
def __init__(self, name, batch_size, layer_sizes, num_channels=1):
"""
Builds a CNN to produce embeddings
:param batch_size: Batch size for experiment
:param layer_sizes: A list of length 4 containing the layer sizes
:param num_channels: Number of channels of images
"""
self.reuse = False
self.name = name
self.batch_size = batch_size
self.num_channels = num_channels
self.layer_sizes = layer_sizes
assert len(self.layer_sizes) == 4, "layer_sizes should be a list of length 4"
def __call__(self, image_input, training=False, dropout_rate=0.0):
"""
Runs the CNN producing the embeddings and the gradients.
:param image_input: Image input to produce embeddings for. [batch_size, 28, 28, 1]
:param training: A flag indicating training or evaluation
:param dropout_rate: A tf placeholder of type tf.float32 indicating the amount of dropout applied
:return: Embeddings of size [batch_size, 64]
"""
with tf.variable_scope(self.name, reuse=self.reuse):
outputs = image_input
with tf.variable_scope('conv_layers'):
for idx, num_filters in enumerate(self.layer_sizes):
with tf.variable_scope('g_conv_{}'.format(idx)):
if idx == len(self.layer_sizes) - 1:
outputs = tf.layers.conv2d(outputs, num_filters, [2, 2], strides=(1, 1),
padding='VALID')
else:
outputs = tf.layers.conv2d(outputs, num_filters, [3, 3], strides=(1, 1),
padding='VALID')
outputs = leaky_relu(outputs)
outputs = tf.contrib.layers.batch_norm(outputs, updates_collections=None,
decay=0.99,
scale=True, center=True,
is_training=training)
outputs = max_pool(outputs, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
#outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)
image_embedding = tf.contrib.layers.flatten(outputs)
self.reuse = True
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
return image_embedding
class MatchingNetwork:
def __init__(self, support_set_images, support_set_labels, target_image, target_label, dropout_rate,
batch_size=100, num_channels=1, is_training=False, learning_rate=0.001, fce=False,
full_context_unroll_k=5, num_classes_per_set=5, num_samples_per_class=1,
average_per_class_embeddings=False):
"""
Builds a matching network, the training and evaluation ops as well as data augmentation routines.
:param support_set_images: A tensor containing the support set images [batch_size, sequence_size, 28, 28, 1]
:param support_set_labels: A tensor containing the support set labels [batch_size, sequence_size, 1]
:param target_image: A tensor containing the target image (image to produce label for) [batch_size, 28, 28, 1]
:param target_label: A tensor containing the target label [batch_size, 1]
:param dropout_rate: A tf placeholder of type tf.float32 denotes the amount of dropout to be used
:param batch_size: The batch size for the experiment
:param num_channels: Number of channels of the images
:param is_training: Flag indicating whether we are training or evaluating
:param rotate_flag: Flag indicating whether to rotate the images
:param fce: Flag indicating whether to use full context embeddings (i.e. apply an LSTM on the CNN embeddings)
:param num_classes_per_set: Integer indicating the number of classes per set
:param num_samples_per_class: Integer indicating the number of samples per class
"""
self.batch_size = batch_size
self.fce = fce
self.classifier = Classifier(name="classifier_net", batch_size=self.batch_size,
num_channels=num_channels, layer_sizes=[64, 64, 64, 64])
if fce:
self.g_lstm = g_embedding_bidirectionalLSTM(name="g_lstm", layer_sizes=[32], batch_size=self.batch_size)
self.f_lstm = f_embedding_bidirectionalLSTM(name="f_attlstm", layer_size=64, batch_size=self.batch_size)
self.dn = DistanceNetwork()
self.classify = AttentionalClassify()
self.full_context_K = full_context_unroll_k
self.support_set_images = support_set_images
self.support_set_labels = support_set_labels
self.average_per_class_embeddings = average_per_class_embeddings
self.target_image = target_image
self.target_label = target_label
self.dropout_rate = dropout_rate
self.is_training = is_training
self.num_classes_per_set = num_classes_per_set
self.num_samples_per_class = num_samples_per_class
self.learning_rate = learning_rate
def loss(self):
"""
Builds tf graph for Matching Networks, produces losses and summary statistics.
:return:
"""
with tf.name_scope("losses"):
[b, num_classes, spc] = self.support_set_labels[0].get_shape().as_list()
self.support_set_labels = tf.reshape(self.support_set_labels[0], shape=(b, num_classes * spc))
self.support_set_labels = tf.one_hot(self.support_set_labels, self.num_classes_per_set) # one hot encode
g_encoded_images = []
[b, num_classes, spc, h, w, c] = self.support_set_images[0].get_shape().as_list()
self.support_set_images = tf.reshape(self.support_set_images[0], shape=(b, num_classes * spc, h, w, c))
for image in tf.unstack(self.support_set_images, axis=1): # produce embeddings for support set images
support_set_cnn_embed = self.classifier(image_input=image, training=self.is_training,
dropout_rate=self.dropout_rate)
g_encoded_images.append(support_set_cnn_embed)
if self.average_per_class_embeddings:
g_encoded_images = tf.stack(g_encoded_images, axis=1)
b, k, h = g_encoded_images.get_shape().as_list()
g_encoded_images = tf.reshape(shape=(b, num_classes, spc, h))
g_encoded_images = tf.reduce_mean(g_encoded_images, axis=2)
self.support_set_labels = tf.reshape(self.support_set_labels, shape=(b, num_classes, spc,
self.num_classes_per_set))
self.support_set_labels = tf.reduce_mean(self.support_set_labels, axis=2)
target_image = self.target_image[0] # produce embedding for target images
f_encoded_image = self.classifier(image_input=target_image, training=self.is_training,
dropout_rate=self.dropout_rate)
if self.fce: # Apply LSTM on embeddings if fce is enabled
g_encoded_images = self.g_lstm(g_encoded_images, training=self.is_training)
f_encoded_image = self.f_lstm(support_set_embeddings=tf.stack(g_encoded_images, axis=1),
K=self.full_context_K,
target_set_embeddings=f_encoded_image, training=self.is_training)
g_encoded_images = tf.stack(g_encoded_images, axis=0)
similarities = self.dn(support_set=g_encoded_images, input_image=f_encoded_image, name="distance_calculation",
training=self.is_training) # get similarity between support set embeddings and target
preds = self.classify(similarities,
support_set_y=self.support_set_labels, name='classify', training=self.is_training)
# produce predictions for target probabilities
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.cast(self.target_label[0], tf.int64))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
targets = tf.one_hot(self.target_label[0], self.num_classes_per_set)
crossentropy_loss = self.crossentropy_softmax(targets=targets, outputs=preds)
tf.add_to_collection('crossentropy_losses', crossentropy_loss)
tf.add_to_collection('accuracy', accuracy)
return {
self.classify: tf.add_n(tf.get_collection('crossentropy_losses'), name='total_classification_loss'),
self.dn: tf.add_n(tf.get_collection('accuracy'), name='accuracy')
}
def train(self, losses):
"""
Builds the train op
:param losses: A dictionary containing the losses
:param learning_rate: Learning rate to be used for Adam
:param beta1: Beta1 to be used for Adam
:return:
"""
c_opt = tf.train.AdamOptimizer(beta1=0.9, learning_rate=self.learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # Needed for correct batch norm usage
with tf.control_dependencies(update_ops): # Needed for correct batch norm usage
if self.fce:
train_variables = self.f_lstm.variables + self.g_lstm.variables + self.classifier.variables
else:
train_variables = self.classifier.variables
c_error_opt_op = c_opt.minimize(losses[self.classify],
var_list=train_variables, colocate_gradients_with_ops=True)
return c_error_opt_op
def crossentropy_softmax(self, outputs, targets):
normOutputs = outputs - tf.reduce_max(outputs, axis=-1)[:, None]
logProb = normOutputs - tf.log(tf.reduce_sum(tf.exp(normOutputs), axis=-1)[:, None])
return -tf.reduce_mean(tf.reduce_sum(targets * logProb, axis=1))
def init_train(self):
"""
Get all ops, as well as all losses.
:return:
"""
losses = self.loss()
c_error_opt_op = self.train(losses)
summary = tf.summary.merge_all()
return summary, losses, c_error_opt_op