-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathmeta_neural_network_architectures.py
690 lines (589 loc) · 31.7 KB
/
meta_neural_network_architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import numbers
from copy import copy
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
def extract_top_level_dict(current_dict):
"""
Builds a graph dictionary from the passed depth_keys, value pair. Useful for dynamically passing external params
:param depth_keys: A list of strings making up the name of a variable. Used to make a graph for that params tree.
:param value: Param value
:param key_exists: If none then assume new dict, else load existing dict and add new key->value pairs to it.
:return: A dictionary graph of the params already added to the graph.
"""
output_dict = {}
for key in current_dict.keys():
name = key.replace("layer_dict.", "")
name = name.replace("layer_dict.", "")
name = name.replace("block_dict.", "")
name = name.replace("module-", "")
top_level = name.split(".")[0]
sub_level = ".".join(name.split(".")[1:])
if top_level in output_dict:
new_item = {key: value for key, value in output_dict[top_level].items()}
new_item[sub_level] = current_dict[key]
output_dict[top_level] = new_item
elif sub_level == "":
output_dict[top_level] = current_dict[key]
else:
output_dict[top_level] = {sub_level: current_dict[key]}
#print(current_dict.keys(), output_dict.keys())
return output_dict
class MetaConv2dLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, use_bias, groups=1, dilation_rate=1):
"""
A MetaConv2D layer. Applies the same functionality of a standard Conv2D layer with the added functionality of
being able to receive a parameter dictionary at the forward pass which allows the convolution to use external
weights instead of the internal ones stored in the conv layer. Useful for inner loop optimization in the meta
learning setting.
:param in_channels: Number of input channels
:param out_channels: Number of output channels
:param kernel_size: Convolutional kernel size
:param stride: Convolutional stride
:param padding: Convolution padding
:param use_bias: Boolean indicating whether to use a bias or not.
"""
super(MetaConv2dLayer, self).__init__()
num_filters = out_channels
self.stride = int(stride)
self.padding = int(padding)
self.dilation_rate = int(dilation_rate)
self.use_bias = use_bias
self.groups = int(groups)
self.weight = nn.Parameter(torch.empty(num_filters, in_channels, kernel_size, kernel_size))
nn.init.xavier_uniform_(self.weight)
if self.use_bias:
self.bias = nn.Parameter(torch.zeros(num_filters))
def forward(self, x, params=None):
"""
Applies a conv2D forward pass. If params are not None will use the passed params as the conv weights and biases
:param x: Input image batch.
:param params: If none, then conv layer will use the stored self.weights and self.bias, if they are not none
then the conv layer will use the passed params as its parameters.
:return: The output of a convolutional function.
"""
if params is not None:
params = extract_top_level_dict(current_dict=params)
if self.use_bias:
(weight, bias) = params["weight"], params["bias"]
else:
(weight) = params["weight"]
bias = None
elif self.use_bias:
weight, bias = self.weight, self.bias
else:
weight = self.weight
bias = None
return F.conv2d(
input=x,
weight=weight,
bias=bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation_rate,
groups=self.groups,
)
class MetaLinearLayer(nn.Module):
def __init__(self, input_shape, num_filters, use_bias):
"""
A MetaLinear layer. Applies the same functionality of a standard linearlayer with the added functionality of
being able to receive a parameter dictionary at the forward pass which allows the convolution to use external
weights instead of the internal ones stored in the linear layer. Useful for inner loop optimization in the meta
learning setting.
:param input_shape: The shape of the input data, in the form (b, f)
:param num_filters: Number of output filters
:param use_bias: Whether to use biases or not.
"""
super(MetaLinearLayer, self).__init__()
b, c = input_shape
self.use_bias = use_bias
self.weights = nn.Parameter(torch.ones(num_filters, c))
nn.init.xavier_uniform_(self.weights)
if self.use_bias:
self.bias = nn.Parameter(torch.zeros(num_filters))
def forward(self, x, params=None):
"""
Forward propagates by applying a linear function (Wx + b). If params are none then internal params are used.
Otherwise passed params will be used to execute the function.
:param x: Input data batch, in the form (b, f)
:param params: A dictionary containing 'weights' and 'bias'. If params are none then internal params are used.
Otherwise the external are used.
:return: The result of the linear function.
"""
if params is not None:
params = extract_top_level_dict(current_dict=params)
if self.use_bias:
(weight, bias) = params["weights"], params["bias"]
else:
(weight) = params["weights"]
bias = None
elif self.use_bias:
weight, bias = self.weights, self.bias
else:
weight = self.weights
bias = None
return F.linear(input=x, weight=weight, bias=bias)
class MetaBatchNormLayer(nn.Module):
def __init__(self, num_features, device, args, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True, meta_batch_norm=True, no_learnable_params=False,
use_per_step_bn_statistics=False):
"""
A MetaBatchNorm layer. Applies the same functionality of a standard BatchNorm layer with the added functionality of
being able to receive a parameter dictionary at the forward pass which allows the convolution to use external
weights instead of the internal ones stored in the conv layer. Useful for inner loop optimization in the meta
learning setting. Also has the additional functionality of being able to store per step running stats and per step beta and gamma.
:param num_features:
:param device:
:param args:
:param eps:
:param momentum:
:param affine:
:param track_running_stats:
:param meta_batch_norm:
:param no_learnable_params:
:param use_per_step_bn_statistics:
"""
super(MetaBatchNormLayer, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
self.track_running_stats = track_running_stats
self.meta_batch_norm = meta_batch_norm
self.num_features = num_features
self.device = device
self.use_per_step_bn_statistics = use_per_step_bn_statistics
self.args = args
self.learnable_gamma = self.args.learnable_bn_gamma
self.learnable_beta = self.args.learnable_bn_beta
if use_per_step_bn_statistics:
self.running_mean = nn.Parameter(torch.zeros(args.number_of_training_steps_per_iter, num_features),
requires_grad=False)
self.running_var = nn.Parameter(torch.ones(args.number_of_training_steps_per_iter, num_features),
requires_grad=False)
self.bias = nn.Parameter(torch.zeros(args.number_of_training_steps_per_iter, num_features),
requires_grad=self.learnable_beta)
self.weight = nn.Parameter(torch.ones(args.number_of_training_steps_per_iter, num_features),
requires_grad=self.learnable_gamma)
else:
self.running_mean = nn.Parameter(torch.zeros(num_features), requires_grad=False)
self.running_var = nn.Parameter(torch.zeros(num_features), requires_grad=False)
self.bias = nn.Parameter(torch.zeros(num_features),
requires_grad=self.learnable_beta)
self.weight = nn.Parameter(torch.ones(num_features),
requires_grad=self.learnable_gamma)
if self.args.enable_inner_loop_optimizable_bn_params:
self.bias = nn.Parameter(torch.zeros(num_features),
requires_grad=self.learnable_beta)
self.weight = nn.Parameter(torch.ones(num_features),
requires_grad=self.learnable_gamma)
self.backup_running_mean = torch.zeros(self.running_mean.shape)
self.backup_running_var = torch.ones(self.running_var.shape)
self.momentum = momentum
def forward(self, input, num_step, params=None, training=False, backup_running_statistics=False):
"""
Forward propagates by applying a bach norm function. If params are none then internal params are used.
Otherwise passed params will be used to execute the function.
:param input: input data batch, size either can be any.
:param num_step: The current inner loop step being taken. This is used when we are learning per step params and
collecting per step batch statistics. It indexes the correct object to use for the current time-step
:param params: A dictionary containing 'weight' and 'bias'.
:param training: Whether this is currently the training or evaluation phase.
:param backup_running_statistics: Whether to backup the running statistics. This is used
at evaluation time, when after the pass is complete we want to throw away the collected validation stats.
:return: The result of the batch norm operation.
"""
if params is not None:
params = extract_top_level_dict(current_dict=params)
(weight, bias) = params["weight"], params["bias"]
#print(num_step, params['weight'])
else:
#print(num_step, "no params")
weight, bias = self.weight, self.bias
if self.use_per_step_bn_statistics:
running_mean = self.running_mean[num_step]
running_var = self.running_var[num_step]
if (
params is None
and not self.args.enable_inner_loop_optimizable_bn_params
):
bias = self.bias[num_step]
weight = self.weight[num_step]
else:
running_mean = None
running_var = None
if backup_running_statistics and self.use_per_step_bn_statistics:
self.backup_running_mean.data = copy(self.running_mean.data)
self.backup_running_var.data = copy(self.running_var.data)
momentum = self.momentum
return F.batch_norm(input, running_mean, running_var, weight, bias,
training=True, momentum=momentum, eps=self.eps)
def restore_backup_stats(self):
"""
Resets batch statistics to their backup values which are collected after each forward pass.
"""
if self.use_per_step_bn_statistics:
self.running_mean = nn.Parameter(self.backup_running_mean.to(device=self.device), requires_grad=False)
self.running_var = nn.Parameter(self.backup_running_var.to(device=self.device), requires_grad=False)
def extra_repr(self):
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
'track_running_stats={track_running_stats}'.format(**self.__dict__)
class MetaLayerNormLayer(nn.Module):
def __init__(self, input_feature_shape, eps=1e-5, elementwise_affine=True):
"""
A MetaLayerNorm layer. A layer that applies the same functionality as a layer norm layer with the added
capability of being able to receive params at inference time to use instead of the internal ones. As well as
being able to use its own internal weights.
:param input_feature_shape: The input shape without the batch dimension, e.g. c, h, w
:param eps: Epsilon to use for protection against overflows
:param elementwise_affine: Whether to learn a multiplicative interaction parameter 'w' in addition to
the biases.
"""
super(MetaLayerNormLayer, self).__init__()
if isinstance(input_feature_shape, numbers.Integral):
input_feature_shape = (input_feature_shape,)
self.normalized_shape = torch.Size(input_feature_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.Tensor(*input_feature_shape), requires_grad=False)
self.bias = nn.Parameter(torch.Tensor(*input_feature_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
"""
Reset parameters to their initialization values.
"""
if self.elementwise_affine:
self.weight.data.fill_(1)
self.bias.data.zero_()
def forward(self, input, num_step, params=None, training=False, backup_running_statistics=False):
"""
Forward propagates by applying a layer norm function. If params are none then internal params are used.
Otherwise passed params will be used to execute the function.
:param input: input data batch, size either can be any.
:param num_step: The current inner loop step being taken. This is used when we are learning per step params and
collecting per step batch statistics. It indexes the correct object to use for the current time-step
:param params: A dictionary containing 'weight' and 'bias'.
:param training: Whether this is currently the training or evaluation phase.
:param backup_running_statistics: Whether to backup the running statistics. This is used
at evaluation time, when after the pass is complete we want to throw away the collected validation stats.
:return: The result of the batch norm operation.
"""
if params is not None:
params = extract_top_level_dict(current_dict=params)
bias = params["bias"]
else:
bias = self.bias
#print('no inner loop params', self)
return F.layer_norm(
input, self.normalized_shape, self.weight, bias, self.eps)
def restore_backup_stats(self):
pass
def extra_repr(self):
return '{normalized_shape}, eps={eps}, ' \
'elementwise_affine={elementwise_affine}'.format(**self.__dict__)
class MetaConvNormLayerReLU(nn.Module):
def __init__(self, input_shape, num_filters, kernel_size, stride, padding, use_bias, args, normalization=True,
meta_layer=True, no_bn_learnable_params=False, device=None):
"""
Initializes a BatchNorm->Conv->ReLU layer which applies those operation in that order.
:param args: A named tuple containing the system's hyperparameters.
:param device: The device to run the layer on.
:param normalization: The type of normalization to use 'batch_norm' or 'layer_norm'
:param meta_layer: Whether this layer will require meta-layer capabilities such as meta-batch norm,
meta-conv etc.
:param input_shape: The image input shape in the form (b, c, h, w)
:param num_filters: number of filters for convolutional layer
:param kernel_size: the kernel size of the convolutional layer
:param stride: the stride of the convolutional layer
:param padding: the bias of the convolutional layer
:param use_bias: whether the convolutional layer utilizes a bias
"""
super(MetaConvNormLayerReLU, self).__init__()
self.normalization = normalization
self.use_per_step_bn_statistics = args.per_step_bn_statistics
self.input_shape = input_shape
self.args = args
self.num_filters = num_filters
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.use_bias = use_bias
self.meta_layer = meta_layer
self.no_bn_learnable_params = no_bn_learnable_params
self.device = device
self.layer_dict = nn.ModuleDict()
self.build_block()
def build_block(self):
x = torch.zeros(self.input_shape)
out = x
self.conv = MetaConv2dLayer(in_channels=out.shape[1], out_channels=self.num_filters,
kernel_size=self.kernel_size,
stride=self.stride, padding=self.padding, use_bias=self.use_bias)
out = self.conv(out)
if self.normalization:
if self.args.norm_layer == "batch_norm":
self.norm_layer = MetaBatchNormLayer(out.shape[1], track_running_stats=True,
meta_batch_norm=self.meta_layer,
no_learnable_params=self.no_bn_learnable_params,
device=self.device,
use_per_step_bn_statistics=self.use_per_step_bn_statistics,
args=self.args)
elif self.args.norm_layer == "layer_norm":
self.norm_layer = MetaLayerNormLayer(input_feature_shape=out.shape[1:])
out = self.norm_layer(out, num_step=0)
out = F.leaky_relu(out)
print(out.shape)
def forward(self, x, num_step, params=None, training=False, backup_running_statistics=False):
"""
Forward propagates by applying the function. If params are none then internal params are used.
Otherwise passed params will be used to execute the function.
:param input: input data batch, size either can be any.
:param num_step: The current inner loop step being taken. This is used when we are learning per step params and
collecting per step batch statistics. It indexes the correct object to use for the current time-step
:param params: A dictionary containing 'weight' and 'bias'.
:param training: Whether this is currently the training or evaluation phase.
:param backup_running_statistics: Whether to backup the running statistics. This is used
at evaluation time, when after the pass is complete we want to throw away the collected validation stats.
:return: The result of the batch norm operation.
"""
batch_norm_params = None
conv_params = None
activation_function_pre_params = None
if params is not None:
params = extract_top_level_dict(current_dict=params)
if self.normalization:
if 'norm_layer' in params:
batch_norm_params = params['norm_layer']
if 'activation_function_pre' in params:
activation_function_pre_params = params['activation_function_pre']
conv_params = params['conv']
out = x
out = self.conv(out, params=conv_params)
if self.normalization:
out = self.norm_layer.forward(out, num_step=num_step,
params=batch_norm_params, training=training,
backup_running_statistics=backup_running_statistics)
out = F.leaky_relu(out)
return out
def restore_backup_stats(self):
"""
Restore stored statistics from the backup, replacing the current ones.
"""
if self.normalization:
self.norm_layer.restore_backup_stats()
class MetaNormLayerConvReLU(nn.Module):
def __init__(self, input_shape, num_filters, kernel_size, stride, padding, use_bias, args, normalization=True,
meta_layer=True, no_bn_learnable_params=False, device=None):
"""
Initializes a BatchNorm->Conv->ReLU layer which applies those operation in that order.
:param args: A named tuple containing the system's hyperparameters.
:param device: The device to run the layer on.
:param normalization: The type of normalization to use 'batch_norm' or 'layer_norm'
:param meta_layer: Whether this layer will require meta-layer capabilities such as meta-batch norm,
meta-conv etc.
:param input_shape: The image input shape in the form (b, c, h, w)
:param num_filters: number of filters for convolutional layer
:param kernel_size: the kernel size of the convolutional layer
:param stride: the stride of the convolutional layer
:param padding: the bias of the convolutional layer
:param use_bias: whether the convolutional layer utilizes a bias
"""
super(MetaNormLayerConvReLU, self).__init__()
self.normalization = normalization
self.use_per_step_bn_statistics = args.per_step_bn_statistics
self.input_shape = input_shape
self.args = args
self.num_filters = num_filters
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.use_bias = use_bias
self.meta_layer = meta_layer
self.no_bn_learnable_params = no_bn_learnable_params
self.device = device
self.layer_dict = nn.ModuleDict()
self.build_block()
def build_block(self):
x = torch.zeros(self.input_shape)
out = x
if self.normalization:
if self.args.norm_layer == "batch_norm":
self.norm_layer = MetaBatchNormLayer(self.input_shape[1], track_running_stats=True,
meta_batch_norm=self.meta_layer,
no_learnable_params=self.no_bn_learnable_params,
device=self.device,
use_per_step_bn_statistics=self.use_per_step_bn_statistics,
args=self.args)
elif self.args.norm_layer == "layer_norm":
self.norm_layer = MetaLayerNormLayer(input_feature_shape=out.shape[1:])
out = self.norm_layer.forward(out, num_step=0)
self.conv = MetaConv2dLayer(in_channels=out.shape[1], out_channels=self.num_filters,
kernel_size=self.kernel_size,
stride=self.stride, padding=self.padding, use_bias=self.use_bias)
self.layer_dict['activation_function_pre'] = nn.LeakyReLU()
out = self.layer_dict['activation_function_pre'].forward(self.conv.forward(out))
print(out.shape)
def forward(self, x, num_step, params=None, training=False, backup_running_statistics=False):
"""
Forward propagates by applying the function. If params are none then internal params are used.
Otherwise passed params will be used to execute the function.
:param input: input data batch, size either can be any.
:param num_step: The current inner loop step being taken. This is used when we are learning per step params and
collecting per step batch statistics. It indexes the correct object to use for the current time-step
:param params: A dictionary containing 'weight' and 'bias'.
:param training: Whether this is currently the training or evaluation phase.
:param backup_running_statistics: Whether to backup the running statistics. This is used
at evaluation time, when after the pass is complete we want to throw away the collected validation stats.
:return: The result of the batch norm operation.
"""
batch_norm_params = None
if params is not None:
params = extract_top_level_dict(current_dict=params)
if self.normalization and 'norm_layer' in params:
batch_norm_params = params['norm_layer']
conv_params = params['conv']
else:
conv_params = None
#print('no inner loop params', self)
out = x
if self.normalization:
out = self.norm_layer.forward(out, num_step=num_step,
params=batch_norm_params, training=training,
backup_running_statistics=backup_running_statistics)
out = self.conv.forward(out, params=conv_params)
out = self.layer_dict['activation_function_pre'].forward(out)
return out
def restore_backup_stats(self):
"""
Restore stored statistics from the backup, replacing the current ones.
"""
if self.normalization:
self.norm_layer.restore_backup_stats()
class VGGReLUNormNetwork(nn.Module):
def __init__(self, im_shape, num_output_classes, args, device, meta_classifier=True):
"""
Builds a multilayer convolutional network. It also provides functionality for passing external parameters to be
used at inference time. Enables inner loop optimization readily.
:param im_shape: The input image batch shape.
:param num_output_classes: The number of output classes of the network.
:param args: A named tuple containing the system's hyperparameters.
:param device: The device to run this on.
:param meta_classifier: A flag indicating whether the system's meta-learning (inner-loop) functionalities should
be enabled.
"""
super(VGGReLUNormNetwork, self).__init__()
b, c, self.h, self.w = im_shape
self.device = device
self.total_layers = 0
self.args = args
self.upscale_shapes = []
self.cnn_filters = args.cnn_num_filters
self.input_shape = list(im_shape)
self.num_stages = args.num_stages
self.num_output_classes = num_output_classes
if args.max_pooling:
print("Using max pooling")
self.conv_stride = 1
else:
print("Using strided convolutions")
self.conv_stride = 2
self.meta_classifier = meta_classifier
self.build_network()
print("meta network params")
for name, param in self.named_parameters():
print(name, param.shape)
def build_network(self):
"""
Builds the network before inference is required by creating some dummy inputs with the same input as the
self.im_shape tuple. Then passes that through the network and dynamically computes input shapes and
sets output shapes for each layer.
"""
x = torch.zeros(self.input_shape)
out = x
self.layer_dict = nn.ModuleDict()
self.upscale_shapes.append(x.shape)
for i in range(self.num_stages):
self.layer_dict['conv{}'.format(i)] = MetaConvNormLayerReLU(input_shape=out.shape,
num_filters=self.cnn_filters,
kernel_size=3, stride=self.conv_stride,
padding=self.args.conv_padding,
use_bias=True, args=self.args,
normalization=True,
meta_layer=self.meta_classifier,
no_bn_learnable_params=False,
device=self.device)
out = self.layer_dict['conv{}'.format(i)](out, training=True, num_step=0)
if self.args.max_pooling:
out = F.max_pool2d(input=out, kernel_size=(2, 2), stride=2, padding=0)
if not self.args.max_pooling:
out = F.avg_pool2d(out, out.shape[2])
self.encoder_features_shape = list(out.shape)
out = out.view(out.shape[0], -1)
self.layer_dict['linear'] = MetaLinearLayer(input_shape=(out.shape[0], np.prod(out.shape[1:])),
num_filters=self.num_output_classes, use_bias=True)
out = self.layer_dict['linear'](out)
print("VGGNetwork build", out.shape)
def forward(self, x, num_step, params=None, training=False, backup_running_statistics=False):
"""
Forward propages through the network. If any params are passed then they are used instead of stored params.
:param x: Input image batch.
:param num_step: The current inner loop step number
:param params: If params are None then internal parameters are used. If params are a dictionary with keys the
same as the layer names then they will be used instead.
:param training: Whether this is training (True) or eval time.
:param backup_running_statistics: Whether to backup the running statistics in their backup store. Which is
then used to reset the stats back to a previous state (usually after an eval loop, when we want to throw away stored statistics)
:return: Logits of shape b, num_output_classes.
"""
param_dict = {}
if params is not None:
params = {key: value[0] for key, value in params.items()}
param_dict = extract_top_level_dict(current_dict=params)
# print('top network', param_dict.keys())
for name, param in self.layer_dict.named_parameters():
path_bits = name.split(".")
layer_name = path_bits[0]
if layer_name not in param_dict:
param_dict[layer_name] = None
out = x
for i in range(self.num_stages):
out = self.layer_dict['conv{}'.format(i)](out, params=param_dict['conv{}'.format(i)], training=training,
backup_running_statistics=backup_running_statistics,
num_step=num_step)
if self.args.max_pooling:
out = F.max_pool2d(input=out, kernel_size=(2, 2), stride=2, padding=0)
if not self.args.max_pooling:
out = F.avg_pool2d(out, out.shape[2])
out = out.view(out.size(0), -1)
out = self.layer_dict['linear'](out, param_dict['linear'])
return out
def zero_grad(self, params=None):
if params is None:
for param in self.parameters():
if (
param.requires_grad == True
and param.grad is not None
and torch.sum(param.grad) > 0
):
print(param.grad)
param.grad.zero_()
else:
for name, param in params.items():
if (
param.requires_grad == True
and param.grad is not None
and torch.sum(param.grad) > 0
):
print(param.grad)
param.grad.zero_()
params[name].grad = None
def restore_backup_stats(self):
"""
Reset stored batch statistics from the stored backup.
"""
for i in range(self.num_stages):
self.layer_dict['conv{}'.format(i)].restore_backup_stats()