-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathdata.py
637 lines (546 loc) · 28.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import json
import os
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import tqdm
import concurrent.futures
import pickle
import torch
from torchvision import transforms
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from utils.parser_utils import get_args
class rotate_image(object):
def __init__(self, k, channels):
self.k = k
self.channels = channels
def __call__(self, image):
if self.channels == 1:
if len(image.shape) == 3:
image = image[:, :, 0]
image = np.expand_dims(image, axis=2)
elif len(image.shape) == 4:
image = image[:, :, :, 0]
image = np.expand_dims(image, axis=3)
image = np.rot90(image, k=self.k).copy()
return image
class torch_rotate_image(object):
def __init__(self, k, channels):
self.k = k
self.channels = channels
def __call__(self, image):
rotate = transforms.RandomRotation(degrees=self.k * 90)
if image.shape[-1] == 1:
image = image[:, :, 0]
image = Image.fromarray(image)
image = rotate(image)
image = np.array(image)
if len(image.shape) == 2:
image = np.expand_dims(image, axis=2)
return image
def augment_image(image, k, channels, augment_bool, args, dataset_name):
transform_train, transform_evaluation = get_transforms_for_dataset(dataset_name=dataset_name,
args=args, k=k)
if len(image.shape) > 3:
images = [item for item in image]
output_images = []
for image in images:
if augment_bool is True:
for transform_current in transform_train:
image = transform_current(image)
else:
for transform_current in transform_evaluation:
image = transform_current(image)
output_images.append(image)
image = torch.stack(output_images)
elif augment_bool is True:
# meanstd transformation
for transform_current in transform_train:
image = transform_current(image)
else:
for transform_current in transform_evaluation:
image = transform_current(image)
return image
def get_transforms_for_dataset(dataset_name, args, k):
if "cifar10" in dataset_name or "cifar100" in dataset_name:
transform_train = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(args.classification_mean, args.classification_std)]
transform_evaluate = [
transforms.ToTensor(),
transforms.Normalize(args.classification_mean, args.classification_std)]
elif 'omniglot' in dataset_name:
transform_train = [rotate_image(k=k, channels=args.image_channels), transforms.ToTensor()]
transform_evaluate = [transforms.ToTensor()]
elif 'imagenet' in dataset_name:
transform_train = [transforms.Compose([
transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])]
transform_evaluate = [transforms.Compose([
transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])]
return transform_train, transform_evaluate
class FewShotLearningDatasetParallel(Dataset):
def __init__(self, args):
"""
A data provider class inheriting from Pytorch's Dataset class. It takes care of creating task sets for
our few-shot learning model training and evaluation
:param args: Arguments in the form of a Bunch object. Includes all hyperparameters necessary for the
data-provider. For transparency and readability reasons to explicitly set as self.object_name all arguments
required for the data provider, such that the reader knows exactly what is necessary for the data provider/
"""
self.data_path = args.dataset_path
self.dataset_name = args.dataset_name
self.data_loaded_in_memory = False
self.image_height, self.image_width, self.image_channel = args.image_height, args.image_width, args.image_channels
self.args = args
self.indexes_of_folders_indicating_class = args.indexes_of_folders_indicating_class
self.reverse_channels = args.reverse_channels
self.labels_as_int = args.labels_as_int
self.train_val_test_split = args.train_val_test_split
self.current_set_name = "train"
self.num_target_samples = args.num_target_samples
self.reset_stored_filepaths = args.reset_stored_filepaths
val_rng = np.random.RandomState(seed=args.val_seed)
val_seed = val_rng.randint(1, 999999)
train_rng = np.random.RandomState(seed=args.train_seed)
train_seed = train_rng.randint(1, 999999)
test_rng = np.random.RandomState(seed=args.val_seed)
test_seed = test_rng.randint(1, 999999)
args.val_seed = val_seed
args.train_seed = train_seed
args.test_seed = test_seed
self.init_seed = {"train": args.train_seed, "val": args.val_seed, 'test': args.val_seed}
self.seed = {"train": args.train_seed, "val": args.val_seed, 'test': args.val_seed}
self.num_of_gpus = args.num_of_gpus
self.batch_size = args.batch_size
self.train_index = 0
self.val_index = 0
self.test_index = 0
self.augment_images = False
self.num_samples_per_class = args.num_samples_per_class
self.num_classes_per_set = args.num_classes_per_set
self.rng = np.random.RandomState(seed=self.seed['val'])
self.datasets = self.load_dataset()
self.indexes = {"train": 0, "val": 0, 'test': 0}
self.dataset_size_dict = {
"train": {key: len(self.datasets['train'][key]) for key in list(self.datasets['train'].keys())},
"val": {key: len(self.datasets['val'][key]) for key in list(self.datasets['val'].keys())},
'test': {key: len(self.datasets['test'][key]) for key in list(self.datasets['test'].keys())}}
self.label_set = self.get_label_set()
self.data_length = {name: np.sum([len(self.datasets[name][key])
for key in self.datasets[name]]) for name in self.datasets.keys()}
print("data", self.data_length)
self.observed_seed_set = None
def load_dataset(self):
"""
Loads a dataset's dictionary files and splits the data according to the train_val_test_split variable stored
in the args object.
:return: Three sets, the training set, validation set and test sets (referred to as the meta-train,
meta-val and meta-test in the paper)
"""
rng = np.random.RandomState(seed=self.seed['val'])
if self.args.sets_are_pre_split == True:
data_image_paths, index_to_label_name_dict_file, label_to_index = self.load_datapaths()
dataset_splits = {}
for key, value in data_image_paths.items():
key = self.get_label_from_index(index=key)
bits = key.split("/")
set_name = bits[0]
class_label = bits[1]
if set_name not in dataset_splits:
dataset_splits[set_name] = {class_label: value}
else:
dataset_splits[set_name][class_label] = value
else:
data_image_paths, index_to_label_name_dict_file, label_to_index = self.load_datapaths()
total_label_types = len(data_image_paths)
num_classes_idx = np.arange(len(data_image_paths.keys()), dtype=np.int32)
rng.shuffle(num_classes_idx)
keys = list(data_image_paths.keys())
values = list(data_image_paths.values())
new_keys = [keys[idx] for idx in num_classes_idx]
new_values = [values[idx] for idx in num_classes_idx]
data_image_paths = dict(zip(new_keys, new_values))
# data_image_paths = self.shuffle(data_image_paths)
x_train_id, x_val_id, x_test_id = int(self.train_val_test_split[0] * total_label_types), \
int(np.sum(self.train_val_test_split[:2]) * total_label_types), \
int(total_label_types)
print(x_train_id, x_val_id, x_test_id)
x_train_classes = (class_key for class_key in list(data_image_paths.keys())[:x_train_id])
x_val_classes = (class_key for class_key in list(data_image_paths.keys())[x_train_id:x_val_id])
x_test_classes = (class_key for class_key in list(data_image_paths.keys())[x_val_id:x_test_id])
x_train, x_val, x_test = {class_key: data_image_paths[class_key] for class_key in x_train_classes}, \
{class_key: data_image_paths[class_key] for class_key in x_val_classes}, \
{class_key: data_image_paths[class_key] for class_key in x_test_classes},
dataset_splits = {"train": x_train, "val":x_val , "test": x_test}
if self.args.load_into_memory is True:
print("Loading data into RAM")
x_loaded = {"train": [], "val": [], "test": []}
for set_key, set_value in dataset_splits.items():
print("Currently loading into memory the {} set".format(set_key))
x_loaded[set_key] = {key: np.zeros(len(value), ) for key, value in set_value.items()}
# for class_key, class_value in set_value.items():
with tqdm.tqdm(total=len(set_value)) as pbar_memory_load:
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
# Process the list of files, but split the work across the process pool to use all CPUs!
for (class_label, class_images_loaded) in executor.map(self.load_parallel_batch, (set_value.items())):
x_loaded[set_key][class_label] = class_images_loaded
pbar_memory_load.update(1)
dataset_splits = x_loaded
self.data_loaded_in_memory = True
return dataset_splits
def load_datapaths(self):
"""
If saved json dictionaries of the data are available, then this method loads the dictionaries such that the
data is ready to be read. If the json dictionaries do not exist, then this method calls get_data_paths()
which will build the json dictionary containing the class to filepath samples, and then store them.
:return: data_image_paths: dict containing class to filepath list pairs.
index_to_label_name_dict_file: dict containing numerical indexes mapped to the human understandable
string-names of the class
label_to_index: dictionary containing human understandable string mapped to numerical indexes
"""
dataset_dir = os.environ['DATASET_DIR']
data_path_file = "{}/{}.json".format(dataset_dir, self.dataset_name)
self.index_to_label_name_dict_file = "{}/map_to_label_name_{}.json".format(dataset_dir, self.dataset_name)
self.label_name_to_map_dict_file = "{}/label_name_to_map_{}.json".format(dataset_dir, self.dataset_name)
if not os.path.exists(data_path_file):
self.reset_stored_filepaths = True
if self.reset_stored_filepaths == True:
if os.path.exists(data_path_file):
os.remove(data_path_file)
self.reset_stored_filepaths = False
try:
data_image_paths = self.load_from_json(filename=data_path_file)
label_to_index = self.load_from_json(filename=self.label_name_to_map_dict_file)
index_to_label_name_dict_file = self.load_from_json(filename=self.index_to_label_name_dict_file)
return data_image_paths, index_to_label_name_dict_file, label_to_index
except:
print("Mapped data paths can't be found, remapping paths..")
data_image_paths, code_to_label_name, label_name_to_code = self.get_data_paths()
self.save_to_json(dict_to_store=data_image_paths, filename=data_path_file)
self.save_to_json(dict_to_store=code_to_label_name, filename=self.index_to_label_name_dict_file)
self.save_to_json(dict_to_store=label_name_to_code, filename=self.label_name_to_map_dict_file)
return self.load_datapaths()
def save_to_json(self, filename, dict_to_store):
with open(os.path.abspath(filename), 'w') as f:
json.dump(dict_to_store, fp=f)
def load_from_json(self, filename):
with open(filename, mode="r") as f:
load_dict = json.load(fp=f)
return load_dict
def load_test_image(self, filepath):
"""
Tests whether a target filepath contains an uncorrupted image. If image is corrupted, attempt to fix.
:param filepath: Filepath of image to be tested
:return: Return filepath of image if image exists and is uncorrupted (or attempt to fix has succeeded),
else return None
"""
image = None
try:
image = Image.open(filepath)
except RuntimeWarning:
os.system("convert {} -strip {}".format(filepath, filepath))
print("converting")
image = Image.open(filepath)
except:
print("Broken image")
if image is not None:
return filepath
else:
return None
def get_data_paths(self):
"""
Method that scans the dataset directory and generates class to image-filepath list dictionaries.
:return: data_image_paths: dict containing class to filepath list pairs.
index_to_label_name_dict_file: dict containing numerical indexes mapped to the human understandable
string-names of the class
label_to_index: dictionary containing human understandable string mapped to numerical indexes
"""
print("Get images from", self.data_path)
data_image_path_list_raw = []
labels = set()
for subdir, dir, files in os.walk(self.data_path):
for file in files:
if (".jpeg") in file.lower() or (".png") in file.lower() or (".jpg") in file.lower():
filepath = os.path.abspath(os.path.join(subdir, file))
label = self.get_label_from_path(filepath)
data_image_path_list_raw.append(filepath)
labels.add(label)
labels = sorted(labels)
idx_to_label_name = {idx: label for idx, label in enumerate(labels)}
label_name_to_idx = {label: idx for idx, label in enumerate(labels)}
data_image_path_dict = {idx: [] for idx in list(idx_to_label_name.keys())}
with tqdm.tqdm(total=len(data_image_path_list_raw)) as pbar_error:
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
# Process the list of files, but split the work across the process pool to use all CPUs!
for image_file in executor.map(self.load_test_image, (data_image_path_list_raw)):
pbar_error.update(1)
if image_file is not None:
label = self.get_label_from_path(image_file)
data_image_path_dict[label_name_to_idx[label]].append(image_file)
return data_image_path_dict, idx_to_label_name, label_name_to_idx
def get_label_set(self):
"""
Generates a set containing all class numerical indexes
:return: A set containing all class numerical indexes
"""
index_to_label_name_dict_file = self.load_from_json(filename=self.index_to_label_name_dict_file)
return set(list(index_to_label_name_dict_file.keys()))
def get_index_from_label(self, label):
"""
Given a class's (human understandable) string, returns the numerical index of that class
:param label: A string of a human understandable class contained in the dataset
:return: An int containing the numerical index of the given class-string
"""
label_to_index = self.load_from_json(filename=self.label_name_to_map_dict_file)
return label_to_index[label]
def get_label_from_index(self, index):
"""
Given an index return the human understandable label mapping to it.
:param index: A numerical index (int)
:return: A human understandable label (str)
"""
index_to_label_name = self.load_from_json(filename=self.index_to_label_name_dict_file)
return index_to_label_name[index]
def get_label_from_path(self, filepath):
"""
Given a path of an image generate the human understandable label for that image.
:param filepath: The image's filepath
:return: A human understandable label.
"""
label_bits = filepath.split("/")
label = "/".join([label_bits[idx] for idx in self.indexes_of_folders_indicating_class])
if self.labels_as_int:
label = int(label)
return label
def load_image(self, image_path, channels):
"""
Given an image filepath and the number of channels to keep, load an image and keep the specified channels
:param image_path: The image's filepath
:param channels: The number of channels to keep
:return: An image array of shape (h, w, channels), whose values range between 0.0 and 1.0.
"""
if not self.data_loaded_in_memory:
image = Image.open(image_path)
if 'omniglot' in self.dataset_name:
image = image.resize((self.image_height, self.image_width), resample=Image.LANCZOS)
image = np.array(image, np.float32)
if channels == 1:
image = np.expand_dims(image, axis=2)
else:
image = image.resize((self.image_height, self.image_width)).convert('RGB')
image = np.array(image, np.float32)
image = image / 255.0
else:
image = image_path
return image
def load_batch(self, batch_image_paths):
"""
Load a batch of images, given a list of filepaths
:param batch_image_paths: A list of filepaths
:return: A numpy array of images of shape batch, height, width, channels
"""
image_batch = []
if self.data_loaded_in_memory:
for image_path in batch_image_paths:
image_batch.append(image_path)
image_batch = np.array(image_batch, dtype=np.float32)
#print(image_batch.shape)
else:
image_batch = [self.load_image(image_path=image_path, channels=self.image_channel)
for image_path in batch_image_paths]
image_batch = np.array(image_batch, dtype=np.float32)
image_batch = self.preprocess_data(image_batch)
return image_batch
def load_parallel_batch(self, inputs):
"""
Load a batch of images, given a list of filepaths
:param batch_image_paths: A list of filepaths
:return: A numpy array of images of shape batch, height, width, channels
"""
class_label, batch_image_paths = inputs
image_batch = []
if self.data_loaded_in_memory:
for image_path in batch_image_paths:
image_batch.append(np.copy(image_path))
image_batch = np.array(image_batch, dtype=np.float32)
else:
#with tqdm.tqdm(total=1) as load_pbar:
image_batch = [self.load_image(image_path=image_path, channels=self.image_channel)
for image_path in batch_image_paths]
#load_pbar.update(1)
image_batch = np.array(image_batch, dtype=np.float32)
image_batch = self.preprocess_data(image_batch)
return class_label, image_batch
def preprocess_data(self, x):
"""
Preprocesses data such that their shapes match the specified structures
:param x: A data batch to preprocess
:return: A preprocessed data batch
"""
x_shape = x.shape
x = np.reshape(x, (-1, x_shape[-3], x_shape[-2], x_shape[-1]))
if self.reverse_channels is True:
reverse_photos = np.ones(shape=x.shape)
for channel in range(x.shape[-1]):
reverse_photos[:, :, :, x.shape[-1] - 1 - channel] = x[:, :, :, channel]
x = reverse_photos
x = x.reshape(x_shape)
return x
def reconstruct_original(self, x):
"""
Applies the reverse operations that preprocess_data() applies such that the data returns to their original form
:param x: A batch of data to reconstruct
:return: A reconstructed batch of data
"""
x = x * 255.0
return x
def shuffle(self, x, rng):
"""
Shuffles the data batch along it's first axis
:param x: A data batch
:return: A shuffled data batch
"""
indices = np.arange(len(x))
rng.shuffle(indices)
x = x[indices]
return x
def get_set(self, dataset_name, seed, augment_images=False):
"""
Generates a task-set to be used for training or evaluation
:param set_name: The name of the set to use, e.g. "train", "val" etc.
:return: A task-set containing an image and label support set, and an image and label target set.
"""
#seed = seed % self.args.total_unique_tasks
rng = np.random.RandomState(seed)
selected_classes = rng.choice(list(self.dataset_size_dict[dataset_name].keys()),
size=self.num_classes_per_set, replace=False)
rng.shuffle(selected_classes)
k_list = rng.randint(0, 4, size=self.num_classes_per_set)
k_dict = {selected_class: k_item for (selected_class, k_item) in zip(selected_classes, k_list)}
episode_labels = [i for i in range(self.num_classes_per_set)]
class_to_episode_label = {selected_class: episode_label for (selected_class, episode_label) in
zip(selected_classes, episode_labels)}
x_images = []
y_labels = []
for class_entry in selected_classes:
choose_samples_list = rng.choice(self.dataset_size_dict[dataset_name][class_entry],
size=self.num_samples_per_class + self.num_target_samples, replace=False)
class_image_samples = []
class_labels = []
for sample in choose_samples_list:
choose_samples = self.datasets[dataset_name][class_entry][sample]
x_class_data = self.load_batch([choose_samples])[0]
k = k_dict[class_entry]
x_class_data = augment_image(image=x_class_data, k=k,
channels=self.image_channel, augment_bool=augment_images,
dataset_name=self.dataset_name, args=self.args)
class_image_samples.append(x_class_data)
class_labels.append(int(class_to_episode_label[class_entry]))
class_image_samples = torch.stack(class_image_samples)
x_images.append(class_image_samples)
y_labels.append(class_labels)
x_images = torch.stack(x_images)
y_labels = np.array(y_labels, dtype=np.float32)
support_set_images = x_images[:, :self.num_samples_per_class]
support_set_labels = y_labels[:, :self.num_samples_per_class]
target_set_images = x_images[:, self.num_samples_per_class:]
target_set_labels = y_labels[:, self.num_samples_per_class:]
return support_set_images, target_set_images, support_set_labels, target_set_labels, seed
def __len__(self):
return self.data_length[self.current_set_name]
def length(self, set_name):
self.switch_set(set_name=set_name)
return len(self)
def set_augmentation(self, augment_images):
self.augment_images = augment_images
def switch_set(self, set_name, current_iter=None):
self.current_set_name = set_name
if set_name == "train":
self.update_seed(dataset_name=set_name, seed=self.init_seed[set_name] + current_iter)
def update_seed(self, dataset_name, seed=100):
self.seed[dataset_name] = seed
def __getitem__(self, idx):
support_set_images, target_set_image, support_set_labels, target_set_label, seed = \
self.get_set(self.current_set_name, seed=self.seed[self.current_set_name] + idx,
augment_images=self.augment_images)
return support_set_images, target_set_image, support_set_labels, target_set_label, seed
def reset_seed(self):
self.seed = self.init_seed
class MetaLearningSystemDataLoader(object):
def __init__(self, args, current_iter=0):
"""
Initializes a meta learning system dataloader. The data loader uses the Pytorch DataLoader class to parallelize
batch sampling and preprocessing.
:param args: An arguments NamedTuple containing all the required arguments.
:param current_iter: Current iter of experiment. Is used to make sure the data loader continues where it left
of previously.
"""
self.num_of_gpus = args.num_of_gpus
self.batch_size = args.batch_size
self.samples_per_iter = args.samples_per_iter
self.num_workers = args.num_dataprovider_workers
self.total_train_iters_produced = 0
self.dataset = FewShotLearningDatasetParallel(args=args)
self.batches_per_iter = args.samples_per_iter
self.full_data_length = self.dataset.data_length
self.continue_from_iter(current_iter=current_iter)
self.args = args
def get_dataloader(self):
"""
Returns a data loader with the correct set (train, val or test), continuing from the current iter.
:return:
"""
return DataLoader(self.dataset, batch_size=(self.num_of_gpus * self.batch_size * self.samples_per_iter),
shuffle=False, num_workers=self.num_workers, drop_last=True)
def continue_from_iter(self, current_iter):
"""
Makes sure the data provider is aware of where we are in terms of training iterations in the experiment.
:param current_iter:
"""
self.total_train_iters_produced += (current_iter * (self.num_of_gpus * self.batch_size * self.samples_per_iter))
def get_train_batches(self, total_batches=-1, augment_images=False):
"""
Returns a training batches data_loader
:param total_batches: The number of batches we want the data loader to sample
:param augment_images: Whether we want the images to be augmented.
"""
if total_batches == -1:
self.dataset.data_length = self.full_data_length
else:
self.dataset.data_length["train"] = total_batches * self.dataset.batch_size
self.dataset.switch_set(set_name="train", current_iter=self.total_train_iters_produced)
self.dataset.set_augmentation(augment_images=augment_images)
self.total_train_iters_produced += (self.num_of_gpus * self.batch_size * self.samples_per_iter)
for sample_id, sample_batched in enumerate(self.get_dataloader()):
yield sample_batched
def get_val_batches(self, total_batches=-1, augment_images=False):
"""
Returns a validation batches data_loader
:param total_batches: The number of batches we want the data loader to sample
:param augment_images: Whether we want the images to be augmented.
"""
if total_batches == -1:
self.dataset.data_length = self.full_data_length
else:
self.dataset.data_length['val'] = total_batches * self.dataset.batch_size
self.dataset.switch_set(set_name="val")
self.dataset.set_augmentation(augment_images=augment_images)
for sample_id, sample_batched in enumerate(self.get_dataloader()):
yield sample_batched
def get_test_batches(self, total_batches=-1, augment_images=False):
"""
Returns a testing batches data_loader
:param total_batches: The number of batches we want the data loader to sample
:param augment_images: Whether we want the images to be augmented.
"""
if total_batches == -1:
self.dataset.data_length = self.full_data_length
else:
self.dataset.data_length['test'] = total_batches * self.dataset.batch_size
self.dataset.switch_set(set_name='test')
self.dataset.set_augmentation(augment_images=augment_images)
for sample_id, sample_batched in enumerate(self.get_dataloader()):
yield sample_batched