-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt2.py
671 lines (523 loc) · 26.1 KB
/
gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
"""
Fyi this code is quite messy (basically me following along the Karpathy tutorial, & coding it out)
It wouln't make much sense for me to clean this up/document properly because
if you'd like clean, documented code, you can just check the source: https://github.com/karpathy/build-nanogpt/blob/master/train_gpt2.py
"""
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
import time
import inspect
import os
import torch.distributed as dist
from torch.distributed import init_process_group, destroy_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
from evals.hellaswag import iterate_examples, render_example
# ---------------
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
# Implementation of the self-attention.
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1,2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1,2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1,2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
# Scale down by num heads to have result 0 < x < 1
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C) #Reassemble the heads side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) #h layer is 4*fan_in in gpt2 paper
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
# During backprop, our x node splits into x and the attention values.
# Thus our residual connection directly updates our initial x grads, but also accumulates from attn/mlp layers
# This is useful for very deep networks where gradients could be lost otherwise
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50257
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd), #token embedding
wpe = nn.Embedding(config.block_size, config.n_embd), #position embedding
h = nn.ModuleList(Block(config) for _ in range(config.n_layer)), #attention + ln + ffwd + ln
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Weight sharing scheme:
# Input embeddings (similar tokens should be close) and Output embeddings (similar predictions should be close) have the same purpose
# So we can actually use the input wte as the output linear layer. This leads to significant speedup.
# Now wte gets gradients from the classifier layer but also from the entire network.
# This saves n_embd*token_size = ~38M params saved (around 30% of our 124M model)
self.transformer.wte.weight = self.lm_head.weight
# Init params (similar to GPT-2 initialization)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias) #by default, pytorch uses uniform
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x) #B, T, vocab_size
logits = self.lm_head(x) #B, T, vocab_size
loss = None
if targets is not None:
# Adjust view. This ensures that for each batch & time, we compare channel output against expected index
logits = logits.view(-1, logits.size(-1)) #B*T, C
targets = targets.view(-1) #B*T
loss = F.cross_entropy(logits, targets) #B, T, vocab_size & B, T
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600)
}[model_type]
config_args['vocab_size'] = 50257
config_args['block_size'] = 1024
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] #discard mask
# Init hugging face model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn_masked_bias')]
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device):
# Implement the weight decay, only weight decay 2D params (those from matrix mul/embeddings)
# Weight decay forces network to distribute tasks across all (rather than some weights getting high importance)
# Get all the parameter groups and the params with gradients
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# Weight decay all 2D parametres
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device == 'cuda'
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8)
return optimizer
# ----------------------------------------------------------------------------------------------------
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename) #Load the np.uint16 values from the file efficiently
npt = npt.astype(np.int32) # added after video
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self, B, T, process_rank, world_size, split):
self.B = B
self.T = T
self.process_rank = process_rank
self.world_size = world_size
assert split in {'train', 'val'}
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for split {split}"
if master_process:
print(f"found {len(shards)} shards for split {split}")
self.reset()
def next_batch(self):
B, T = self.B, self.T
# TODO: Ideally we want to randomize batching so that our model doesn't get biased by data order
buf = self.tokens[self.current_position : self.current_position + B * T + 1]
x = (buf[:-1]).view(B, T)
y = (buf[1:].view(B, T))
# Reset the pointer if the next batch would be longer than the tokens length.
self.current_position += B * T * self.process_rank
if self.current_position + self.process_rank * B * T + 1 > len(self.tokens):
# Advance shard/loop, load in new tokens
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
return x, y
def reset(self):
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
# -----------------------------------------------------------------------------
# helper function for HellaSwag eval
# takes tokens, mask, and logits, returns the index of the completion with the lowest loss
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm
# ----------------------------------------------------------------------------------------------------
if __name__ == '__main__':
# Simple launch:
# python gpt2.py
# DDP launch (for eg 8 gpus)
# torchrun --standalone --nproc_per_node=8 gpt2.py
# torchrun command set-up up the RANK, LOCAL_RANK And WORLD_SIZE
ddp = int(os.environ.get('RANK', -1)) != -1 #is this a ddp run
if ddp:
assert torch.cuda.is_available(), "we need cuda for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK']) #rank of the gpu globally (across all nodes) <- we use this
ddp_local_rank = int(os.environ['LOCAL_RANK']) #local rank of the gpu within the current node (we don't care for single node)
ddp_world_size = int(os.environ['WORLD_SIZE']) # number of processes running
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 #handles logging, checkpointing etc
else:
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
# Attempt to auto-detect device
device = 'cpu'
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = 'mps' #apple mbp uses metal performance shaders/gpu api
# NOTE: mps gives really weird bugs (negative losses) which is impossible. CPU does not.
# device = 'cpu' #OVERRIDE
device_type = "cuda" if device.startswith("cuda") else "cpu"
#Get a data batch
enc = tiktoken.encoding_for_model('gpt2')
# with open('input.txt', 'r') as f:
# text = f.read()
# text = text[:1000]
# tokens = enc.encode(text)
# B, T = 4, 32
# buf = torch.tensor(tokens[:B*T + 1])
# buf = buf.to(device)
# x = buf[:-1].view(B, T)
# y = buf[1:].view(B, T)
#Set the float32 to use 'high' (Tensor Precision (TP32)) instead of 'highest' (FP32 precision)
torch.set_float32_matmul_precision('high')
# Get logits
model = GPT(GPTConfig(vocab_size=50304))
model.to(device)
use_compile = False #interferes with HellaSwag & evaluation
if use_compile:
model = torch.compile(model) #fuses nodes. Seems to not work on MBP CPU ;(
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
# We can't fit the GPT-2 style batch into one go.
# Instead, we accumulate gradient across multiple iterations and then optimize when we hit total_batch_size
# Much larger batch sizes results in more stable training, thus grad_accum makes sense
total_batch_size = 524288
B = 64 #16
T = 1024
assert total_batch_size % (B * T * ddp_world_size) == 0, "make sure total_batch_size is divisible by B * T * ddp_world_size"
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
if master_process:
print(f'total desired batch size: {total_batch_size}')
print(f'=> calculated gradient accumulation steps: {grad_accum_steps}')
# logits, loss = model(x, y)
# print(logits.shape)
# print(loss.item()) #prints 11. -ln(1/50257) = 10.82, which shows our model is not confidently loss. Good starting init.
# Cosine-decay learning rate
max_lr = 6e-4
min_lr = max_lr * 0.1
warmup_steps = 715
max_steps = 19073 #total tokens / total_batch_size
def get_lr(it):
if it < warmup_steps:
return max_lr * (it+1) / warmup_steps
if it > max_steps:
return min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
# optimize
# optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device=device)
# Logger
log_dir = "log"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"log.txt")
with open(log_file, "w") as f: #starts empty
pass
# train_loader = DataLoaderLite(B=4, T=32)
train_loader = DataLoaderLite(B, T, ddp_rank, ddp_world_size, split="train") #B=16 does not fit on MPS apple gpu *cries*
val_loader = DataLoaderLite(B, T, ddp_rank, ddp_world_size, split="val")
if master_process:
print("Starting training")
for step in range(max_steps):
t0 = time.time()
last_step = (step == max_steps - 1)
# if step == 0 and master_process:
# print("Training loop began")
# Once in a while sample the validation loss
if step % 250 == 0 or last_step:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
# print("Validating model loss...")
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
if master_process:
print(f"validation loss: {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
if step > 0 and (step % 5000 == 0 or last_step):
checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
checkpoint = {
'model': raw_model.state_dict(),
'config': raw_model.config,
'step': step,
'val_loss': val_loss_accum.item()
}
# Might also need to add optimizer state dict and rng seed etc
torch.save(checkpoint, checkpoint_path)
# Once in a while evaluate the model on HellaSwag
if (step % 250 == 0 or last_step) and (not use_compile):
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
# only process examples where i % ddp_world_size == ddp_rank
if i % ddp_world_size != ddp_rank:
pass
_, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
with torch.no_grad():
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(tokens)
pred_norm = get_most_likely_row(tokens, mask, logits)
num_total += 1
num_correct_norm += int(pred_norm == label)
# Reduce stats across all ranks
if ddp:
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
num_total = num_total.item()
num_correct_norm = num_correct_norm.item()
acc_norm = num_correct_norm / num_total
if master_process:
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
with open(log_file,"a") as f:
f.write(f"{step} hella {acc_norm:.4f}\n")
# Once in a while sample the model
if ((step > 0 and step % 250 == 0) or last_step) and (not use_compile):
model.eval()
num_return_sequences = 4
max_length = 32
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
xgen = tokens.to(device)
sample_rng = torch.Generator(device=device)
sample_rng.manual_seed(42 + ddp_rank)
while xgen.size(1) < max_length:
with torch.no_grad():
logits, loss = model(xgen)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
ix = torch.multinomial(topk_probs, 1, generator=sample_rng)
xcol = torch.gather(topk_indices, -1, ix)
xgen = torch.cat((xgen, xcol), dim=1)
for i in range(num_return_sequences):
tokens = xgen[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(f"rank {ddp_rank} sample {i}: {decoded}")
model.train()
optimizer.zero_grad()
loss_accum = 0.0
# if master_process and step < 2:
# print(f"Step {step}: Starting {grad_accum_steps} gradient accumulation steps...")
# if step == 0 and master_process:
# print(f"Beginning grad accumulation ({grad_accum_steps} steps)")
for micro_step in range(grad_accum_steps):
# if step == 0 and micro_step == 0 and master_process:
# print("Training micro_steps began")
x, y = train_loader.next_batch()
x = x.to(device)
y = y.to(device)
# if step == 0 and micro_step == 0 and master_process:
# print(f"Batch loaded, moving to device {device}...")
if ddp:
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
if torch.cuda.is_available():
with torch.autocast(device_type=device_type, dtype=torch.bfloat16): #adds 5000 tokens/sec on A100 (BF16)
logits, loss = model(x,y)
else:
logits, loss = model(x,y)
loss = loss / grad_accum_steps #need to scale due to grad_accum
loss_accum += loss.detach()
if ddp:
# Ensure we only synchronize gpu losses at the end of grad accum (using the ddp sync flag)
model.require_backward_grad_sync == (micro_step == grad_accum_steps - 1)
loss.backward()
if ddp:
# Every node broadcasts the local losses and averages it
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
#calculate global norm. For every grad of every param, square it, add it all, take the sqrt => norm. Ensure it's not more than 1.0
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
if torch.cuda.is_available():
torch.cuda.synchronize() #Wait for gpu to finish all the scheduled tasks
elif device == 'mps':
torch.mps.synchronize()
t1 = time.time()
dt = (t1 - t0)
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
tokens_per_sec = tokens_processed / dt
if master_process:
print(f"step {step:4d} | loss: {loss_accum.item():.6f} | lr: {lr:.4e} | norm: {norm:.4f} | dt: {dt*1000:2f}ms | tok/sec: {tokens_per_sec}")
with open(log_file, "a") as f:
f.write(f"{step} train {loss_accum.item():.6f}\n")
# print("Finished training")
if ddp:
destroy_process_group()
import sys;sys.exit(0)
#
num_return_sequences = 5
max_length = 30
model = GPT.from_pretrained('gpt2') #Run with HF model weights
# model = GPT(GPTConfig()) #Run with uninitialized weights
model.eval()
model.to(device) #model lives on GPU
#prefix tokens
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
x = tokens.to(device)
torch.manual_seed(42)
# torch.cuda.manual_seed(42)
while x.size(1) < max_length:
with torch.no_grad():
logits = model(x) #(B, T, vocab_size)
# take logits at the last position
logits = logits[:, -1, :] #B, vocab_size
probs = F.softmax(logits, dim=-1)
# USing only top 50, it helps ensure we don't take very rare tokens (help keep model from blabbing)
# Get the top 50
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# Select a token from the topk probs
ix = torch.multinomial(topk_probs, 1) #B, 1
# Gather corresponding indices sampled from the probs
xcol = torch.gather(topk_indices, -1, ix) #B, 1
x = torch.cat((x, xcol), dim=1)
for i in range(num_return_sequences):
tokens = x[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(">", decoded)