The Deep and Wide algorithm directly extracts the results of Embedding into the DNN to further extract high-order feature intersections, and finally it combines the first-order features with the higher-order features for prediction. The framework is as follows:
- SimpleInputLayer: sparse data input layer, which optimizes sparse high-dimensional data, is essentially a FCLayer.
- Embedding: implicit embedding layer, if the feature is not one-hot, multiplied by the eigenvalue.
- FCLayer: the most common layer in DNN, linear transformation followed by transfer function.
- SumPooling: adding multiple input data to element-wise, requiring the input have the same shape.
- SimpleLossLayer: loss layer, different loss functions can be specified
override def buildNetwork(): Unit = {
val wide = new SimpleInputLayer("input", 1, new Identity(),
JsonUtils.getOptimizerByLayerType(jsonAst, "SparseInputLayer"))
val embeddingParams = JsonUtils.getLayerParamsByLayerType(jsonAst, "Embedding")
.asInstanceOf[EmbeddingParams]
val embedding = new Embedding("embedding", embeddingParams.outputDim, embeddingParams.numFactors,
embeddingParams.optimizer.build()
)
val hiddenLayer = JsonUtils.getFCLayer(jsonAst, embedding)
val join = new SumPooling("sumPooling", 1, Array[Layer](wide, hiddenLayer))
new SimpleLossLayer("simpleLossLayer", join, lossFunc)
}
When Deep and wide have more parameters, they need to be specified in the form of a Json configuration file(see Json description for a complete description of the Json configuration file), A typical example is as follows:
{
"data": {
"format": "dummy",
"indexrange": 148,
"numfield": 13,
"validateratio": 0.1
},
"model": {
"modeltype": "T_DOUBLE_SPARSE_LONGKEY",
"modelsize": 148
},
"train": {
"epoch": 10,
"numupdateperepoch": 10,
"lr": 0.1,
"decay": 0.8
},
"default_optimizer": {
"type": "momentum",
"momentum": 0.9,
"reg2": 0.01
},
"layers": [
{
"name": "wide",
"type": "simpleinputlayer",
"outputdim": 1,
"transfunc": "identity"
},
{
"name": "embedding",
"type": "embedding",
"numfactors": 8,
"outputdim": 104
},
{
"name": "fclayer",
"type": "FCLayer",
"inputlayer": "embedding",
"outputdims": [
100,
100,
1
],
"transfuncs": [
"relu",
"relu",
"identity"
]
},
{
"name": "sumPooling",
"type": "SumPooling",
"outputdim": 1,
"inputlayers": [
"wide",
"fclayer"
]
},
{
"name": "simplelosslayer",
"type": "simplelosslayer",
"lossfunc": "logloss",
"inputlayer": "sumPooling"
}
]
}
Several steps must be done before editing the submitting script and running.
- confirm Hadoop and Spark have ready in your environment
- unzip sona--bin.zip to local directory (SONA_HOME)
- upload sona--bin directory to HDFS (SONA_HDFS_HOME)
- Edit $SONA_HOME/bin/spark-on-angel-env.sh, set SPARK_HOME, SONA_HOME, SONA_HDFS_HOME and ANGEL_VERSION
Here's an example of submitting scripts, remember to adjust the parameters and fill in the paths according to your own task.
#test description
actionType=train or predict
jsonFile=path-to-jsons/daw.json
modelPath=path-to-save-model
predictPath=path-to-save-predict-results
input=path-to-data
queue=your-queue
HADOOP_HOME=my-hadoop-home
source ./bin/spark-on-angel-env.sh
export HADOOP_HOME=$HADOOP_HOME
$SPARK_HOME/bin/spark-submit \
--master yarn-cluster \
--conf spark.ps.jars=$SONA_ANGEL_JARS \
--conf spark.ps.instances=10 \
--conf spark.ps.cores=2 \
--conf spark.ps.memory=10g \
--jars $SONA_SPARK_JARS \
--files $jsonFile \
--driver-memory 20g \
--num-executors 20 \
--executor-cores 5 \
--executor-memory 30g \
--queue $queue \
--class org.apache.spark.angel.examples.JsonRunnerExamples \
./lib/angelml-$SONA_VERSION.jar \
jsonFile:./daw.json \
dataFormat:libsvm \
data:$input \
modelPath:$modelPath \
predictPath:$predictPath \
actionType:$actionType \
numBatch:500 \
maxIter:2 \
lr:4.0 \
numField:39