-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinterparc.m
575 lines (515 loc) · 16.9 KB
/
interparc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
% this function interpolates new points at any fractional points
function [pt,dudt,fofthandle] = interparc(t,px,py,varargin)
% interparc: interpolate points along a curve in 2 or more dimensions
% usage: pt = interparc(t,px,py) % a 2-d curve
% usage: pt = interparc(t,px,py,pz) % a 3-d curve
% usage: pt = interparc(t,px,py,pz,pw,...) % a 4-d or higher dimensional curve
% usage: pt = interparc(t,px,py,method) % a 2-d curve, method is specified
% usage: [pt,dudt,fofthandle] = interparc(t,px,py,...) % also returns derivatives, and a function handle
%
% Interpolates new points at any fractional point along
% the curve defined by a list of points in 2 or more
% dimensions. The curve may be defined by any sequence
% of non-replicated points.
%
% arguments: (input)
% t - vector of numbers, 0 <= t <= 1, that define
% the fractional distance along the curve to
% interpolate the curve at. t = 0 will generate
% the very first point in the point list, and
% t = 1 yields the last point in that list.
% Similarly, t = 0.5 will yield the mid-point
% on the curve in terms of arc length as the
% curve is interpolated by a parametric spline.
%
% If t is a scalar integer, at least 2, then
% it specifies the number of equally spaced
% points in arclength to be generated along
% the curve.
%
% px, py, pz, ... - vectors of length n, defining
% points along the curve. n must be at least 2.
% Exact Replicate points should not be present
% in the curve, although there is no constraint
% that the curve has replicate independent
% variables.
%
% method - (OPTIONAL) string flag - denotes the method
% used to compute the points along the curve.
%
% method may be any of 'linear', 'spline', or 'pchip',
% or any simple contraction thereof, such as 'lin',
% 'sp', or even 'p'.
%
% method == 'linear' --> Uses a linear chordal
% approximation to interpolate the curve.
% This method is the most efficient.
%
% method == 'pchip' --> Uses a parametric pchip
% approximation for the interpolation
% in arc length.
%
% method == 'spline' --> Uses a parametric spline
% approximation for the interpolation in
% arc length. Generally for a smooth curve,
% this method may be most accurate.
%
% method = 'csape' --> if available, this tool will
% allow a periodic spline fit for closed curves.
% ONLY use this method if your points should
% represent a closed curve.
%
% If the last point is NOT the same as the
% first point on the curve, then the curve
% will be forced to be periodic by this option.
% That is, the first point will be replicated
% onto the end.
%
% If csape is not present in your matlab release,
% then an error will result.
%
% DEFAULT: 'spline'
%
%
% arguments: (output)
% pt - Interpolated points at the specified fractional
% distance (in arc length) along the curve.
%
% dudt - when a second return argument is required,
% interparc will return the parametric derivatives
% (dx/dt, dy/dt, dz/dt, ...) as an array.
%
% fofthandle - a function handle, taking numbers in the interval [0,1]
% and evaluating the function at those points.
%
% Extrapolation will not be permitted by this call.
% Any values of t that lie outside of the interval [0,1]
% will be clipped to the endpoints of the curve.
%
% Example:
% % Interpolate a set of unequally spaced points around
% % the perimeter of a unit circle, generating equally
% % spaced points around the perimeter.
% theta = sort(rand(15,1))*2*pi;
% theta(end+1) = theta(1);
% px = cos(theta);
% py = sin(theta);
%
% % interpolate using parametric splines
% pt = interparc(100,px,py,'spline');
%
% % Plot the result
% plot(px,py,'r*',pt(:,1),pt(:,2),'b-o')
% axis([-1.1 1.1 -1.1 1.1])
% axis equal
% grid on
% xlabel X
% ylabel Y
% title 'Points in blue are uniform in arclength around the circle'
%
%
% Example:
% % For the previous set of points, generate exactly 6
% % points around the parametric splines, verifying
% % the uniformity of the arc length interpolant.
% pt = interparc(6,px,py,'spline');
%
% % Convert back to polar form. See that the radius
% % is indeed 1, quite accurately.
% [TH,R] = cart2pol(pt(:,1),pt(:,2))
% % TH =
% % 0.86005
% % 2.1141
% % -2.9117
% % -1.654
% % -0.39649
% % 0.86005
% % R =
% % 1
% % 0.9997
% % 0.9998
% % 0.99999
% % 1.0001
% % 1
%
% % Unwrap the polar angles, and difference them.
% diff(unwrap(TH))
% % ans =
% % 1.2541
% % 1.2573
% % 1.2577
% % 1.2575
% % 1.2565
%
% % Six points around the circle should be separated by
% % 2*pi/5 radians, if they were perfectly uniform. The
% % slight differences are due to the imperfect accuracy
% % of the parametric splines.
% 2*pi/5
% % ans =
% % 1.2566
%
%
% See also: arclength, spline, pchip, interp1
%
% Author: John D'Errico
% e-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 3/15/2010
% unpack the arguments and check for errors
if nargin < 3
error('ARCLENGTH:insufficientarguments', ...
'at least t, px, and py must be supplied')
end
t = t(:);
if (numel(t) == 1) && (t > 1) && (rem(t,1) == 0)
% t specifies the number of points to be generated
% equally spaced in arclength
t = linspace(0,1,t)';
elseif any(t < 0) || any(t > 1)
error('ARCLENGTH:impropert', ...
'All elements of t must be 0 <= t <= 1')
end
% how many points will be interpolated?
nt = numel(t);
% the number of points on the curve itself
px = px(:);
py = py(:);
n = numel(px);
% are px and py both vectors of the same length?
if ~isvector(px) || ~isvector(py) || (length(py) ~= n)
error('ARCLENGTH:improperpxorpy', ...
'px and py must be vectors of the same length')
elseif n < 2
error('ARCLENGTH:improperpxorpy', ...
'px and py must be vectors of length at least 2')
end
% compose px and py into a single array. this way,
% if more dimensions are provided, the extension
% is trivial.
pxy = [px,py];
ndim = 2;
% the default method is 'linear'
method = 'spline';
% are there any other arguments?
if nargin > 3
% there are. check the last argument. Is it a string?
if ischar(varargin{end})
method = varargin{end};
varargin(end) = [];
% method may be any of {'linear', 'pchip', 'spline', 'csape'.}
% any any simple contraction thereof.
valid = {'linear', 'pchip', 'spline', 'csape'};
[method,errstr] = validstring(method,valid);
if ~isempty(errstr)
error('INTERPARC:incorrectmethod',errstr)
end
end
% anything that remains in varargin must add
% an additional dimension on the curve/polygon
for i = 1:numel(varargin)
pz = varargin{i};
pz = pz(:);
if numel(pz) ~= n
error('ARCLENGTH:improperpxorpy', ...
'pz must be of the same size as px and py')
end
pxy = [pxy,pz]; %#ok
end
% the final number of dimensions provided
ndim = size(pxy,2);
end
% if csape, then make sure the first point is replicated at the end.
% also test to see if csape is available
if method(1) == 'c'
if exist('csape','file') == 0
error('CSAPE was requested, but you lack the necessary toolbox.')
end
p1 = pxy(1,:);
pend = pxy(end,:);
% get a tolerance on whether the first point is replicated.
if norm(p1 - pend) > 10*eps(norm(max(abs(pxy),[],1)))
% the two end points were not identical, so wrap the curve
pxy(end+1,:) = p1;
nt = nt + 1;
end
end
% preallocate the result, pt
pt = NaN(nt,ndim);
% Compute the chordal (linear) arclength
% of each segment. This will be needed for
% any of the methods.
chordlen = sqrt(sum(diff(pxy,[],1).^2,2));
% Normalize the arclengths to a unit total
chordlen = chordlen/sum(chordlen);
% cumulative arclength
cumarc = [0;cumsum(chordlen)];
% The linear interpolant is trivial. do it as a special case
if method(1) == 'l'
% The linear method.
% which interval did each point fall in, in
% terms of t?
[junk,tbins] = histc(t,cumarc); %#ok
% catch any problems at the ends
tbins((tbins <= 0) | (t <= 0)) = 1;
tbins((tbins >= n) | (t >= 1)) = n - 1;
% interpolate
s = (t - cumarc(tbins))./chordlen(tbins);
% be nice, and allow the code to work on older releases
% that don't have bsxfun
pt = pxy(tbins,:) + (pxy(tbins+1,:) - pxy(tbins,:)).*repmat(s,1,ndim);
% do we need to compute derivatives here?
if nargout > 1
dudt = (pxy(tbins+1,:) - pxy(tbins,:))./repmat(chordlen(tbins),1,ndim);
end
% do we need to create the spline as a piecewise linear function?
if nargout > 2
spl = cell(1,ndim);
for i = 1:ndim
coefs = [diff(pxy(:,i))./diff(cumarc),pxy(1:(end-1),i)];
spl{i} = mkpp(cumarc.',coefs);
end
%create a function handle for evaluation, passing in the splines
fofthandle = @(t) foft(t,spl);
end
% we are done at this point
return
end
% If we drop down to here, we have either a spline
% or csape or pchip interpolant to work with.
% compute parametric splines
spl = cell(1,ndim);
spld = spl;
diffarray = [3 0 0;0 2 0;0 0 1;0 0 0];
for i = 1:ndim
switch method
case 'pchip'
spl{i} = pchip(cumarc,pxy(:,i));
case 'spline'
spl{i} = spline(cumarc,pxy(:,i));
nc = numel(spl{i}.coefs);
if nc < 4
% just pretend it has cubic segments
spl{i}.coefs = [zeros(1,4-nc),spl{i}.coefs];
spl{i}.order = 4;
end
case 'csape'
% csape was specified, so the curve is presumed closed,
% therefore periodic
spl{i} = csape(cumarc,pxy(:,i),'periodic');
nc = numel(spl{i}.coefs);
if nc < 4
% just pretend it has cubic segments
spl{i}.coefs = [zeros(1,4-nc),spl{i}.coefs];
spl{i}.order = 4;
end
end
% and now differentiate them
xp = spl{i};
xp.coefs = xp.coefs*diffarray;
xp.order = 3;
spld{i} = xp;
end
% catch the case where there were exactly three points
% in the curve, and spline was used to generate the
% interpolant. In this case, spline creates a curve with
% only one piece, not two.
if (numel(cumarc) == 3) && (method(1) == 's')
cumarc = spl{1}.breaks;
n = numel(cumarc);
chordlen = sum(chordlen);
end
% Generate the total arclength along the curve
% by integrating each segment and summing the
% results. The integration scheme does its job
% using an ode solver.
% polyarray here contains the derivative polynomials
% for each spline in a given segment
polyarray = zeros(ndim,3);
seglen = zeros(n-1,1);
% options for ode45
opts = odeset('reltol',1.e-9);
for i = 1:spl{1}.pieces
% extract polynomials for the derivatives
for j = 1:ndim
polyarray(j,:) = spld{j}.coefs(i,:);
end
% integrate the arclength for the i'th segment
% using ode45 for the integral. I could have
% done this part with quad too, but then it
% would not have been perfectly (numerically)
% consistent with the next operation in this tool.
[tout,yout] = ode45(@(t,y) segkernel(t,y),[0,chordlen(i)],0,opts); %#ok
seglen(i) = yout(end);
end
% and normalize the segments to have unit total length
totalsplinelength = sum(seglen);
cumseglen = [0;cumsum(seglen)];
% which interval did each point fall into, in
% terms of t, but relative to the cumulative
% arc lengths along the parametric spline?
[junk,tbins] = histc(t*totalsplinelength,cumseglen); %#ok
% catch any problems at the ends
tbins((tbins <= 0) | (t <= 0)) = 1;
tbins((tbins >= n) | (t >= 1)) = n - 1;
% Do the fractional integration within each segment
% for the interpolated points. t is the parameter
% used to define the splines. It is defined in terms
% of a linear chordal arclength. This works nicely when
% a linear piecewise interpolant was used. However,
% what is asked for is an arclength interpolation
% in terms of arclength of the spline itself. Call s
% the arclength traveled along the spline.
s = totalsplinelength*t;
% the ode45 options will now include an events property
% so we can catch zero crossings.
opts = odeset('reltol',1.e-9,'events',@ode_events);
ti = t;
for i = 1:nt
% si is the piece of arc length that we will look
% for in this spline segment.
si = s(i) - cumseglen(tbins(i));
% extract polynomials for the derivatives
% in the interval the point lies in
for j = 1:ndim
polyarray(j,:) = spld{j}.coefs(tbins(i),:);
end
% we need to integrate in t, until the integral
% crosses the specified value of si. Because we
% have defined totalsplinelength, the lengths will
% be normalized at this point to a unit length.
%
% Start the ode solver at -si, so we will just
% look for an event where y crosses zero.
[tout,yout,te,ye] = ode45(@(t,y) segkernel(t,y),[0,chordlen(tbins(i))],-si,opts); %#ok
% we only need that point where a zero crossing occurred
% if no crossing was found, then we can look at each end.
if ~isempty(te)
ti(i) = te(1) + cumarc(tbins(i));
else
% a crossing must have happened at the very
% beginning or the end, and the ode solver
% missed it, not trapping that event.
if abs(yout(1)) < abs(yout(end))
% the event must have been at the start.
ti(i) = tout(1) + cumarc(tbins(i));
else
% the event must have been at the end.
ti(i) = tout(end) + cumarc(tbins(i));
end
end
end
% Interpolate the parametric splines at ti to get
% our interpolated value.
for L = 1:ndim
pt(:,L) = ppval(spl{L},ti);
end
% do we need to compute first derivatives here at each point?
if nargout > 1
dudt = zeros(nt,ndim);
for L = 1:ndim
dudt(:,L) = ppval(spld{L},ti);
end
end
% create a function handle for evaluation, passing in the splines
if nargout > 2
fofthandle = @(t) foft(t,spl);
end
% ===============================================
% nested function for the integration kernel
% ===============================================
function val = segkernel(t,y) %#ok
% sqrt((dx/dt)^2 + (dy/dt)^2 + ...)
val = zeros(size(t));
for k = 1:ndim
val = val + polyval(polyarray(k,:),t).^2;
end
val = sqrt(val);
end % function segkernel
% ===============================================
% nested function for ode45 integration events
% ===============================================
function [value,isterminal,direction] = ode_events(t,y) %#ok
% ode event trap, looking for zero crossings of y.
value = y;
isterminal = ones(size(y));
direction = ones(size(y));
end % function ode_events
end % mainline - interparc
% ===============================================
% end mainline - interparc
% ===============================================
% begin subfunctions
% ===============================================
% ===============================================
% subfunction for evaluation at any point externally
% ===============================================
function f_t = foft(t,spl)
% tool allowing the user to evaluate the interpolant at any given point for any values t in [0,1]
pdim = numel(spl);
f_t = zeros(numel(t),pdim);
% convert t to a column vector, clipping it to [0,1] as we do.
t = max(0,min(1,t(:)));
% just loop over the splines in the cell array of splines
for i = 1:pdim
f_t(:,i) = ppval(spl{i},t);
end
end % function foft
function [str,errorclass] = validstring(arg,valid)
% validstring: compares a string against a set of valid options
% usage: [str,errorclass] = validstring(arg,valid)
%
% If a direct hit, or any unambiguous shortening is found, that
% string is returned. Capitalization is ignored.
%
% arguments: (input)
% arg - character string, to be tested against a list
% of valid choices. Capitalization is ignored.
%
% valid - cellstring array of alternative choices
%
% Arguments: (output)
% str - string - resulting choice resolved from the
% list of valid arguments. If no unambiguous
% choice can be resolved, then str will be empty.
%
% errorclass - string - A string argument that explains
% the error. It will be one of the following
% possibilities:
%
% '' --> No error. An unambiguous match for arg
% was found among the choices.
%
% 'No match found' --> No match was found among
% the choices provided in valid.
%
% 'Ambiguous argument' --> At least two ambiguous
% matches were found among those provided
% in valid.
%
%
% Example:
% valid = {'off' 'on' 'The sky is falling'}
%
%
% See also: parse_pv_pairs, strmatch, strcmpi
%
% Author: John D'Errico
% e-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 3/25/2010
ind = find(strncmpi(lower(arg),valid,numel(arg)));
if isempty(ind)
% No hit found
errorclass = 'No match found';
str = '';
elseif (length(ind) > 1)
% Ambiguous arg, hitting more than one of the valid options
errorclass = 'Ambiguous argument';
str = '';
return
else
errorclass = '';
str = valid{ind};
end
end % function validstring