-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtern.c
248 lines (231 loc) · 4.92 KB
/
tern.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
Copyright 2013 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "tern.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "util.h"
tern_node * tern_insert(tern_node * head, char const * key, tern_val value, uint8_t valtype)
{
tern_node ** cur = &head;
while(*key)
{
if (*cur) {
while(*cur && (*cur)->el != *key)
{
if (*key < (*cur)->el) {
cur = &(*cur)->left;
} else {
cur = &(*cur)->right;
}
}
}
if (!*cur) {
*cur = malloc(sizeof(tern_node));
(*cur)->left = NULL;
(*cur)->right = NULL;
(*cur)->straight.next = NULL;
(*cur)->el = *key;
(*cur)->valtype = TVAL_NONE;
}
cur = &((*cur)->straight.next);
key++;
}
while(*cur && (*cur)->el)
{
cur = &(*cur)->left;
}
if (!*cur) {
*cur = malloc(sizeof(tern_node));
(*cur)->left = NULL;
(*cur)->right = NULL;
(*cur)->el = 0;
}
(*cur)->straight.value = value;
(*cur)->valtype = valtype;
return head;
}
uint8_t tern_find(tern_node * head, char const * key, tern_val *ret)
{
tern_node * cur = head;
while (cur)
{
if (cur->el == *key) {
if (*key) {
cur = cur->straight.next;
key++;
} else {
*ret = cur->straight.value;
return cur->valtype;
}
} else if (*key < cur->el) {
cur = cur->left;
} else {
cur = cur->right;
}
}
return TVAL_NONE;
}
tern_node * tern_find_prefix(tern_node * head, char const * key)
{
tern_node * cur = head;
while (cur && *key)
{
if (cur->el == *key) {
cur = cur->straight.next;
key++;
} else if (*key < cur->el) {
cur = cur->left;
} else {
cur = cur->right;
}
}
return cur;
}
intptr_t tern_find_int(tern_node * head, char const * key, intptr_t def)
{
tern_val ret;
uint8_t valtype = tern_find(head, key, &ret);
if (valtype == TVAL_INT) {
return ret.intval;
}
return def;
}
tern_node * tern_insert_int(tern_node * head, char const * key, intptr_t value)
{
tern_val val;
val.intval = value;
return tern_insert(head, key, val, TVAL_INT);
}
void * tern_find_ptr_default(tern_node * head, char const * key, void * def)
{
tern_val ret;
uint8_t valtype = tern_find(head, key, &ret);
if (valtype == TVAL_PTR) {
return ret.ptrval;
}
return def;
}
void * tern_find_ptr(tern_node * head, char const * key)
{
return tern_find_ptr_default(head, key, NULL);
}
tern_node *tern_find_node(tern_node *head, char const *key)
{
tern_val ret;
uint8_t valtype = tern_find(head, key, &ret);
if (valtype == TVAL_NODE) {
return ret.ptrval;
}
return NULL;
}
tern_val tern_find_path_default(tern_node *head, char const *key, tern_val def, uint8_t req_valtype)
{
tern_val ret;
while (*key)
{
uint8_t valtype = tern_find(head, key, &ret);
if (!valtype) {
return def;
}
key = key + strlen(key) + 1;
if (*key) {
if (valtype != TVAL_NODE) {
return def;
}
head = ret.ptrval;
} else if (req_valtype && req_valtype != valtype) {
return def;
}
}
return ret;
}
tern_val tern_find_path(tern_node *head, char const *key, uint8_t valtype)
{
tern_val def;
def.ptrval = NULL;
return tern_find_path_default(head, key, def, valtype);
}
tern_node * tern_insert_ptr(tern_node * head, char const * key, void * value)
{
tern_val val;
val.ptrval = value;
return tern_insert(head, key, val, TVAL_PTR);
}
tern_node * tern_insert_node(tern_node *head, char const *key, tern_node *value)
{
tern_val val;
val.ptrval = value;
return tern_insert(head, key, val, TVAL_NODE);
}
uint32_t tern_count(tern_node *head)
{
uint32_t count = 0;
if (head->left) {
count += tern_count(head->left);
}
if (head->right) {
count += tern_count(head->right);
}
if (!head->el) {
count++;
} else if (head->straight.next) {
count += tern_count(head->straight.next);
}
return count;
}
#define MAX_ITER_KEY 127
void tern_foreach_int(tern_node *head, iter_fun fun, void *data, char *keybuf, int pos)
{
if (!head->el) {
keybuf[pos] = 0;
fun(keybuf, head->straight.value, head->valtype, data);
}
if (head->left) {
tern_foreach_int(head->left, fun, data, keybuf, pos);
}
if (head->el) {
if (pos == MAX_ITER_KEY) {
fatal_error("tern_foreach_int: exceeded maximum key size");
}
keybuf[pos] = head->el;
tern_foreach_int(head->straight.next, fun, data, keybuf, pos+1);
}
if (head->right) {
tern_foreach_int(head->right, fun, data, keybuf, pos);
}
}
void tern_foreach(tern_node *head, iter_fun fun, void *data)
{
//lame, but good enough for my purposes
char key[MAX_ITER_KEY+1];
tern_foreach_int(head, fun, data, key, 0);
}
char * tern_int_key(uint32_t key, char * buf)
{
char * cur = buf;
while (key)
{
*(cur++) = (key & 0x7F) + 1;
key >>= 7;
}
*cur = 0;
return buf;
}
void tern_free(tern_node *head)
{
if (head->left) {
tern_free(head->left);
}
if (head->right) {
tern_free(head->right);
}
if (head->el) {
tern_free(head->straight.next);
}
free(head);
}