-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscheduler.py
57 lines (43 loc) · 2.09 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import math
import numpy as np
from torch.optim import Optimizer, lr_scheduler
class WarmUpLR(lr_scheduler._LRScheduler):
"""Warm Up learning rate strategy
Before warmup_step, lr increases from 0 to initial learning rate gradually
After warmup_step, lr decreases from initial learning rate according to the negative square root of "step"
If warmup_step=0, skip the phase of warm up and step into decay phase directly
"""
def __init__(self, optimizer, warmup_step, last_epoch=-1):
self.warmup_step = warmup_step
super(WarmUpLR, self).__init__(optimizer, last_epoch=last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_step:
return [base_lr * ((self.last_epoch + 1) / self.warmup_step) \
for base_lr in self.base_lrs]
else:
return [base_lr * math.pow(self.last_epoch + 1, -0.5) \
for base_lr in self.base_lrs]
class CosineAnnealingWarmUpLR(lr_scheduler._LRScheduler):
"""Warm Up learning rate strategy
Before warmup_step, lr increases from 0 to initial learning rate of "optimizer" gradually
After warmup_step, lr decreases from initial learning rate according to cosine annealing
If warmup_step=0, skip the phase of warm up and step into decay phase directly
"""
def __init__(self, optimizer, warmup_step, max_step, min_lr=0, last_epoch=-1):
self.warmup_step = warmup_step
self.max_step = max_step
self.min_lr = min_lr
super(CosineAnnealingWarmUpLR, self).__init__(optimizer, last_epoch=last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_step:
return [base_lr * ((self.last_epoch + 1) / self.warmup_step) \
for base_lr in self.base_lrs]
else:
return [self.min_lr + 0.5*(base_lr-self.min_lr) * \
(1 + np.cos(np.pi * (self.last_epoch-self.warmup_step)/(self.max_step-self.warmup_step))) \
for base_lr in self.base_lrs]
def adjust_learning_rate(optimizer, iteration_count, lr, lr_decay):
"""Imitating the original implementation"""
lr = lr / (1.0 + lr_decay * iteration_count)
for param_group in optimizer.param_groups:
param_group['lr'] = lr