-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
264 lines (216 loc) · 9.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import csv
from models.resnet import *
from utils import *
from data.cifar import CIFAR10, CIFAR100
from TruncatedLoss import TruncatedLoss
parser = argparse.ArgumentParser(
description='PyTorch TruncatedLoss')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--sess', default='default', type=str, help='session id')
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--decay', default=1e-4, type=float,
help='weight decay (default=1e-4)')
parser.add_argument('--lr', default=0.01, type=float,
help='initial learning rate')
parser.add_argument('--batch-size', '-b', default=128,
type=int, help='mini-batch size (default: 128)')
parser.add_argument('--epochs', default=120, type=int,
help='number of total epochs to run')
parser.add_argument('--start_prune', default=40, type=int,
help='number of total epochs to run')
parser.add_argument('--noise_type', type = str, help='[pairflip, symmetric]', default='pairflip')
parser.add_argument('--noise_rate', type = float, help = 'corruption rate, should be less than 1', default = 0.2)
parser.add_argument('--gamma', type = float, default = 0.1)
parser.add_argument('--schedule', nargs='+', type=int)
best_acc = 0
args = parser.parse_args()
def main():
use_cuda = torch.cuda.is_available()
global best_acc
# load dataset
if args.dataset=='cifar10':
num_classes=10
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
])
train_dataset = CIFAR10(root='./data/',
download=True,
train=True,
transform=transform_train,
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
test_dataset = CIFAR10(root='./data/',
download=True,
train=False,
transform=transform_test,
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
if args.dataset=='cifar100':
num_classes=100
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276))
])
train_dataset = CIFAR100(root='./data/',
download=True,
train=True,
transform=transform_train,
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
test_dataset = CIFAR100(root='./data/',
download=True,
train=False,
transform=transform_test,
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
testloader = torch.utils.data.DataLoader(
test_dataset, batch_size=100, shuffle=False, num_workers=2)
trainloader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2)
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7.' + args.sess)
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch'] + 1
torch.set_rng_state(checkpoint['rng_state'])
else:
print('==> Building model.. (Default : ResNet34)')
start_epoch = 0
net = ResNet34(num_classes)
result_folder = './results/'
if not os.path.exists(result_folder):
os.makedirs(result_folder)
logname = result_folder + net.__class__.__name__ + \
'_' + args.sess + '.csv'
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net)
print('Using', torch.cuda.device_count(), 'GPUs.')
cudnn.benchmark = True
print('Using CUDA..')
criterion = TruncatedLoss(trainset_size=len(train_dataset)).cuda()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=args.schedule, gamma=args.gamma)
if not os.path.exists(logname):
with open(logname, 'w') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow(
['epoch', 'train loss', 'train acc', 'test loss', 'test acc'])
for epoch in range(start_epoch, args.epochs):
train_loss, train_acc = train(epoch, trainloader, net, criterion, optimizer)
test_loss, test_acc = test(epoch, testloader, net, criterion)
with open(logname, 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow([epoch, train_loss, train_acc, test_loss, test_acc])
scheduler.step()
# Training
def train(epoch, trainloader, net, criterion, optimizer):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
if (epoch+1) >= args.start_prune and (epoch+1) % 10 == 0:
checkpoint = torch.load('./checkpoint/ckpt.t7.' + args.sess)
net = checkpoint['net']
net.eval()
for batch_idx, (inputs, targets, indexes) in enumerate(trainloader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
criterion.update_weight(outputs, targets, indexes)
now = torch.load('./checkpoint/current_net')
net = now['current_net']
net.train()
for batch_idx, (inputs, targets, indexes) in enumerate(trainloader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets, indexes)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
correct = correct.item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
return (train_loss / batch_idx, 100. * correct / total)
def test(epoch, testloader, net, criterion):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets, indexes)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
correct = correct.item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
# Save checkpoint.
acc = 100. * correct / total
if acc > best_acc:
best_acc = acc
checkpoint(acc, epoch, net)
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
state = {
'current_net': net,
}
torch.save(state, './checkpoint/current_net')
return (test_loss / batch_idx, 100. * correct / total)
def checkpoint(acc, epoch, net):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7.' +
args.sess)
if __name__ == '__main__':
main()