-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintal.h
103 lines (85 loc) · 4.58 KB
/
intal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Library "intal" - Integer of arbitray length
// intal is a nonnegative integer of arbitrary length (not more than 1000 decimal digits).
// The integer is stored as a null terminated string of ASCII characters.
// String of decimal digits ('0' thru '9') are stored in big endian style.
// That is, the most significant digit is at the head of the string.
// Eg: Integer 25 is stored in str as '2' at str[0], '5' at str[1], and null char at str[2].
// DO NOT modify this header file.
// Your deliverable is the implementation file.
// The implementation file has the definition of the functions decalred here.
// You can write some of your own helper functions, keep them "static".
// Use the sample test file (that has the main function) to test your implementation.
// To generate your own testcases, you can use https://www.omnicalculator.com/math
// Returns the sum of two intals.
char* intal_add(const char* intal1, const char* intal2);
// Returns the comparison value of two intals.
// Returns 0 when both are equal.
// Returns +1 when intal1 is greater, and -1 when intal2 is greater.
int intal_compare(const char* intal1, const char* intal2);
// Returns the difference (obviously, nonnegative) of two intals.
char* intal_diff(const char* intal1, const char* intal2);
// Returns the product of two intals.
char* intal_multiply(const char* intal1, const char* intal2);
// Returns intal1 mod intal2
// The mod value should be in the range [0, intal2 - 1].
// intal2 > 1
// Implement a O(log intal1) time taking algorithm.
// O(intal1 / intal2) time taking algorithm may exceed time limit.
// O(intal1 / intal2) algorithm may repeatedly subtract intal2 from intal1.
// That will take intal1/intal2 iterations.
// You need to design a O(log intal1) time taking algorithm.
// Generate your own testcases at https://www.omnicalculator.com/math/modulo
char* intal_mod(const char* intal1, const char* intal2);
// Returns intal1 ^ intal2.
// Let 0 ^ n = 0, where n is an intal.
// Implement a O(log n) intal multiplications algorithm.
// 2^3000 has less than 1000 decimal digits. 3000 intal multiplications may exceed time limit.
char* intal_pow(const char* intal1, unsigned int n);
// Returns Greatest Common Devisor of intal1 and intal2.
// Let GCD be "0" if both intal1 and intal2 are "0" even though it is undefined, mathematically.
// Use Euclid's theorem to not exceed the time limit.
char* intal_gcd(const char* intal1, const char* intal2);
// Returns nth fibonacci number.
// intal_fibonacci(0) = intal "0".
// intal_fibonacci(1) = intal "1".
char* intal_fibonacci(unsigned int n);
// Returns the factorial of n.
char* intal_factorial(unsigned int n);
// Returns the Binomial Coefficient C(n,k).
// 0 <= k <= n
// C(n,k) < 10^1000 because the returning value is expected to be less than 10^1000.
// Use the Pascal's identity C(n,k) = C(n-1,k) + C(n-1,k-1)
// Make sure the intermediate intal values do not cross C(n,k).
// Use Dynamic Programming. Use extra space of not more than O(k) number of intals. Do not allocate the whole O(nk) DP table.
// Don't let C(1000,900) take more time than C(1000,500). Time limit may exceed otherwise.
char* intal_bincoeff(unsigned int n, unsigned int k);
// Returns the offset of the largest intal in the array.
// Return the smallest offset if there are multiple occurrences.
// 1 <= n <= 1000
int intal_max(char **arr, int n);
// Returns the offset of the smallest intal in the array.
// Return the smallest offset if there are multiple occurrences.
// 1 <= n <= 1000
int intal_min(char **arr, int n);
// Returns the offset of the first occurrence of the key intal in the array.
// Returns -1 if the key is not found.
// 1 <= n <= 1000
int intal_search(char **arr, int n, const char* key);
// Returns the offset of the first occurrence of the key intal in the SORTED array.
// Returns -1 if the key is not found.
// The array is sorted in nondecreasing order.
// 1 <= n <= 1000
// The implementation should be a O(log n) algorithm.
int intal_binsearch(char **arr, int n, const char* key);
// Sorts the array of n intals.
// 1 <= n <= 1000
// The implementation should be a O(n log n) algorithm.
void intal_sort(char **arr, int n);
// Coin-Row Problem - Dynamic Programming Solution
// There is a row of n coins whose values are some positive integers C[0..n-1].
// The goal is to pick up the maximum amount of money subject to the constraint that
// no two coins adjacent in the initial row can be picked up.
// 1 <= n <= 1000
// The implementation should be O(n) time and O(1) extra space even though the DP table may be of O(n) size.
// Eg: Coins = [10, 2, 4, 6, 3, 9, 5] returns 25
char* coin_row_problem(char **arr, int n);