Fast Ephemeron Collection

Mark S. Miller Andreas Gal
Google, Inc. Mozilla Labs

Abstract

As far as we are aware, all previous published or implemented ephemeron
collection algorithms have an O(N?) complexity measure during an atomic
step of their marking phase. To ensure efficient collection under novel us-
age patterns, we first present an ephemeron collection algorithm with a
reasonable complexity measure and reasonable constant overheads. We
then present an elaboration with O(1) complexity during each atomic
step of the marking phase, where these steps can be interleaved with the
mutator, allowing the mutator to remain responsive.

1 Introduction

Programmers often use weak-keyed hash tables to implement soft fields. A
soft field acts, for most purposes, like a new field added to a set of objects—
it associates each object in the set with a corresponding value for that field.
However, rather than store these field values on the objects, instead it stores
them in a side table indexed by the identity of these objects.

Were this side table a normal identity-keyed hashtable, soft fields would
have an obvious memory leak compared to normal fields. When programmers
use weak-keyed hashtables to avoid this obvious leak, they continue to suffer
from a subtler leak that they are generally unaware ofE| A weak-keyed hash
table is implemented by a hash table storing weak references to its keys and
strong pointers to its values. It also registers for notification of finalization on
these weak key references (whether pre- or post-mortem). When notified, it
deletes the association indexed by this key and thus drops its strong pointer
to the corresponding value. The problem arises when the key is itself strongly
reachable from the value. Since the table strongly retains the value and the
value strongly retains the key, the collector cannot realize it can drop the key
and so the table is never notified.

To solve the problem, the collector must know about the associations or the
tables containing them directly, so it can mark the value only if the key and
the table are already marked. When the collector directly knows about these

1 T have informally observed this by quizzing several programmers, including garbage col-
lection experts, of leak hazards they know of when using weak-keyed hash tables for soft
fields.

associations, the associations are called ephemeron pairs. When the collector
directly knows about the tables, the tables are generally called ephemeron tables.
Either ephemeron pairs or ephemeron tables can be built from the other. In
this paper, we consider only ephemeron tables. In the remainder of this paper,
to distinguish levels of abstraction, we will adopt the term * WeakMap”ﬂ to
refer to the application visible ephemeron table abstraction, reserving “table”
for hash tables within the implementation. We define ephemeron reachability
as the rule that the only values reachable from WeakMaps are those associated
with reachable keys in reachable WeakMaps.

At any moment, say K is the set of all objects that are keys in any WeakMap,
G is the set of WeakMaps, and K G the set of associations in all WeakMaps from
these keys to values. We can divide each of these into two subsets according to
whether they’ve been marked: K, for the unmarked keys, K,, for the marked
keys, etc. We can thus divide the associations into four disjoint subsets: KG =
K,G,UK,G,UK, G, UK,,G,,. An ephemeron collector need only propagate
markings to the values associated with K,,G,.

The marking phase of previously published algorithms (**citations needed)
and implementations (**citations needed) work essentially as follows:

Declare that all objects are white.
Color all roots grey.

While any objects are grey {
While any objects are grey, pick a grey object x {
If x is the get() function of a weak map {
Note this weak map.
} else {
For all y’s directly reachable from x {
If y is white, color it grey.
}
}

Color x black.

}

For each noted weak map g {
For each k,v pair in g { // rescanning for marked keys
If k is black and v is white, color v grey

}
}
}

Retain black objects, recycling storage for white objects.

As with Dijstra’s algorithm from which this is derived, white represents

2 This is the agreed term for ephemeron tables as adopted by the next EcmaScript standard
(**cite).

unmarked and black and grey represent marked. Grey further represents marked
nodes from which potentially unmarked nodes might be reachable and need to
be marked, so that the marking phase of the garbage collector is not done until
all the grey is gone.

This rescanning potentially costs O((|KyGy| + |KmGm|)?). Consider the
case where each value marking propagates to mark only one previously un-
marked key. Ideally, we’d like our costs to be O(|K,,G,]), since those are pre-
cisely the associations that propagate to marking their associated values. The
algorithm presented in this paper instead costs O (| K, Gy | +|Kw G|+ | KmGml)-
It wastes linear effort on the half-marked associations but wastes none on un-
marked associations. We build up to this algorithm by successive refinement,
starting with a simpler algorithm that does not perform as well.

2 A Non-Redundant Representation

We assume an internal hash table implementation with the following API, where
table.keys() costs O(]K]) cost and all other methods cost O(1):

class Table {
get(Object) -> Value
set(Object, Value)
keys() -> Object[]l // snapshot
pick() -> Object | null
reset ()

}

Value represents the type that includes all first class values in our language,
including an assumed null. Object represents the subtype of Value including
only those values with an unforgeable identity, because synthesizable values,
such as the number 33, cannot usefully serve as keys in weak maps. We assume
null is not an Object.

This provides a table as a total mapping from all objects to any value,
where all objects map to null by default, and only a finite number map to any
other value. Thus, table.get(key) always returns a valid value. With this
representation, table.set(key, null) effectively deletes that key from the
table. As a temporary measure to disappear in later refinements, tt table.keys()
returns a list containing a snapshot of all keys that do not map to null. On an
empty table, i.e., a table in which all keys map to null, table.pick() returns
null. On a non-empty table, table.pick() returns some key that does not
map to null. Finally, table.reset () deletes all associations from the table, so
that all keys once again map to null.

In Figure [1} the four quadrants represent our four subsets

White, upper left corner represents K,G,, the set of all associations from
unmarked keys in unmarked weak maps.

Yellow, upper right corner represents K,,G,, the set of all associations from
marked keys in unmarked weak maps.

Blue, lower left corner represents K,(G,,, the set of all associations from
unmarked keys in marked weak maps.

Green, upper right corner represents K,,G,, the set of all associations from
marked keys in marked weak maps.

Each small circle represents an individual association, placed on a row ac-
cording to its weak map identity and a columns according to its key identity.
The oblong rounded rectangles represent our internal tables. The labeled ones
outside the square are global tables whose existence is stable. These outer tables
map from key identities to the inner tables shown hovering over the square, that
map from weak map identities to values. Each such mapping is represented as
an association shown over the inner table.

ByKey = [[Table(), Table()], [Table(), Table()]]

getValue(g :WeakMap, k :0bject) -> Value {
let outerTable = ByKey[isMarked (k)] [isMarked(g)]
let optInnerTable = outerTable.get (k)
if (optInnerTable == null) { return null }
return optInnerTable.get(g)

At the beginning of our marking phase, all objects are unmarked including
our keys and weak maps, and so all associations are in the white upper left quad-
rant. Whenever a key gets marked, we need to move the column representing
that key identity from the left to the right, represented by the rightward yellow
arrows. Yellow added to white yields yellow. Yellow added to blue yields green.
Whenever a weak map gets marked, we need to move the row representing that
weak map identity from top to bottom, represented by the downward pointing
blue arrows. As an association lands in the green lower right quadrant, if its
value is unmarked, we color it grey.

We could mark a key by moving the inner tables themselves rightward

markKey (key :0bject) {
let optInnerWhite = ByKeys[0] [0].get (key)
ByKeys[1] [0] .set(k, optInnerWhite)

let optInnerBlue = ByKeys[0] [1].get (k)
ByKeys[1] [1] .set(k, optInnerBlue)

if (optInnerBlue !'= null) {
for g in optInnerBlue.keys() {
mark (optInnerBlue.get(g))

With this choice, marking a key is fast, as we simply transfer at most two
inner tables from being stored in the left outer tables to being stored in the right
outer tables, in order to move the column. To mark K,, keys, our complexity
measure is O(| Ky, | + | KmGml), where the last term is the cost of coloring grey
all values for newly green associations. Instead, we opt for a choice that, at
this stage, has a worse complexity measure but better sets us up for our next
refinements.

Our new markKey depends on two new helper functions:

getInnerTable(outer, key) gets, or makes if necessary, an inner table at
key in the outer table.

move (outerFrom, outerKey, innerKey, innerTo) If there is an association
at outerFrom.get(outerKey).get(innerKey) move it to innerTo.get (innerKey),
while cleaning up the tables it was removed from. Returns the transfered
value, or null if none.

/] 0(1)
getInnerTable(outer :Table, key) -> Table {
var optResult = outer.get (key)
if (optResult == null) {
optResult = Table()
outer.set(key, optResult)

}

return optResult

}
/1 0()

move (outerFrom, outerKey, innerKey, innerTo) -> Value {
let optInnerFrom = outerFrom.get (outerKey)

if (optInnerFrom == null) { return null }
let value = optInnerFrom.get (innerKey)
if (value == null) { return null }

innerTo.set (innerKey, value)

innerFrom. set (innerKey, null)

if (innerFrom.pick() == null) { // empty
outerFrom.set (outerKey, null)

}

return value

With these helpers, our new markKey remains simple.

markKey (key :0bject) {
let optInnerWhite = ByKeys[0] [0].get (key)
if (optInnerWhite != null) {
innerYellow = getInnerTable(ByKeys[1][0], key)
while (null != (g = optInnerWhite.pick())) {
move (ByKeys [0] [0], key, g, innerYellow)
}
}
let optInnerBlue = ByKeys[0] [1].get (key)
if (optInnerBlue != null) {
innerGreen = getInnerTable(ByKeys[1][1], key)
while (null != (g = optInnerBlue.pick())) {
value = move(ByKeys[0] [1], key, g, innerGreen)
mark (value)

}
}
}

This increases the complexity measure of marking a key to O(|K,,G.| +
| K.uGi|), which is still within our stated goals. The situation is not so happy
for marking a weak map.

markWeakMap (g :WeakMap) {
for k in ByKeys[0][0].keys() {
let innerWhite = ByKeys[0] [0].get (k)
let value = innerWhite.get(g)
if (value !'= null) {
innerBlue = getInnerTable(ByKeys[0][1], k)
move (ByKeys [0] [0], k, g, innerBlue)
}
}
for k in ByKeys[1][0].keys() {
let innerYellow = ByKeys[1] [0].get (k)
let value = innerYellow.get(g)
if (value !'= null) {
innerGreen = getInnerTable(ByKeys[1][1], k)
move (ByKeys[1] [0], k, g, innerGreen)
mark (value)

}
}
}

In this representation, we must enumerate all upper inner tables in order
to test if they contain an association for this weak map, in order to move that
association to the lower tables. To mark G,, weak maps, our complexity measure
is O(|Gm| % (|Ky| + |Km|)). This is proportional to the total area of the rows

moved down. If these rows are sparse, this is prohibitively more expensive than
just moving the associations in those rows.

Finally, we augment our collector’s mark step to call narkKey and /or markWeakMap
in addition to its normal marking step colorGrey, which we assume is itself

o(1).

mark (obj) {
if (isMarked(obj)) { return }
colorGrey (obj)
if (obj might be a key in any weak map) { markKey(obj) }
if (obj is a WeakMap) { markWeakMap(obj) }

In order to quickly test whether an object might be a key in a weak map,
we assume an additional bit per object for this purpose, that is set when an
object is used as a key in a weakMap.set (key, value) operation. We leave the
efficient clearing of this bit as an exercise for the reader. Note that a weak map
can also be a key in weak maps, so there is no “else” guarding the last “if”.

At the end of our marking phase, we collect all unreachable associations by
reseting the global white, yellow, and blue tables. We begin the next marking
phase by swapping the global green and white tables, thereby declaring all
remaining associations to be white.

reset() {
ByKeys [0] [0] .reset ()
ByKeys [0] [1] .reset ()
ByKeys [1] [0] .reset ()
swap (&ByKeys [0] [0], &ByKeys[1][1])

3 A Symmetric Representation

To avoid this explosive amount of work, we opt for two way redundancy to
give ourselves a symmetric representation, shown in Figure Our original
representation remains, in which keys are the primary index and weak maps are
the secondary index. To this, we add four more global tables, shown as the outer
vertical oblong rectangles in Figure 2] in which the weak maps are the primary
index and the keys are the secondary. Each association is now represented by
entries in two inner tables, the original representing this association’s column
and a new one representing this associations’s row.

ByWeakMaps = [[Table(), Table()], [Table(), Table()]]

Figure depicts how our new markKey algorithm moves column k rightward.
To maintain the redundant representation, it must do the work of our earlier
markKey, but it must also remove these associations from all the inner tables rep-
resenting the rows on which these associations are found. For example, it must

remove b from the left w row and remove f from the left y row. AndmarkKey
must do this extra work in time proportional only to the number of associations
present in the column, not on the total area of the column. Fortunately, we can
now enumerate the column to find the rows that need updating.

markKey (key :0bject) {
let optInnerWhiteColumn = ByKeys[0] [0].get (key)
if (optInnerWhiteColumn != null) {
innerYellowColumn = getInnerTable(ByKeys[1][0], key)
while (null != (g = optInnerWhiteColumn.pick())) {
move (ByKeys [0] [0], key, g, innerYellowColumn)
innerYellowRow = getInnerTable(ByWeakMaps[0][1], g)
move (ByWeakMaps [0] [0], g, key, innerYellowRow)

}
}

let optInnerBlueColumn = ByKeys[0] [1].get (key)
if (optInnerBlueColumn != null) {
innerGreenColumn = getInnerTable(ByKeys[1][1], key)
while (null != (g = optInnerBlueColumn.pick())) {
value = move(ByKeys[0][1], key, g, innerGreenColumn)
innerGreenRow = getInnerTable(ByWeakMaps[1][1], g)
move (ByWeakMaps[1] [0], g, key, innerGreenRow)
mark (value)

}
}
}

markWeakMap (g :WeakMap) {
// the transpose of the markKey algorithm, except omitting
// the mark(value) call at the end which would be redundant

}

Taking both markKey and markWeakMap into account, the above code repeats
essentially the same algorithm four times, corresponding to our big yellow and
blue arrows in Figure[l] An actual implementation might express this algorithm
in a more parameterizable form, so that it can be reused in these four contexts.
We avoided doing so in this paper for expository purposes.

4 Worst Case Complexity Measure

Notice that markKey and markWeakMap no longer make any use of table.keys(),
which we can therefore now drop from our internal Table abstraction. All the
remaining operations they call are each O(1), so we can calculate the complexity
according to how many times each loop body is executed. For example, the first
loop of markKey, corresponding to the upper rightward yellow arrow in Figure
executes |K,,G,| times. Altogether, we have |K,,Gy| + |KmGum| + | KuGm| +

| K, G| loop iterations during the marking phase, achieving our original goal
of O(|KpmGy| + | KuGml| + | K Ginl)

5 Actual Implementation and Measurement

(**TBD¥)

6 Incremental Collection

(**TBD*)

7 Usage for Membranes

(**TBD*)

8 Conclusions

(**TBD*)

u-keys, u-gets C m-keys, u-gets)

()

]
C

()
RY,
~~

i k n
u-keys, m-gets) m-keys, m-gets D

Figure 1: By-key Representation.

10

u-keys, u-gets

C m-keys},@ets)
‘ Y

@

n ‘sy@B6-n

she

sAey-n ‘sjeb-w

m-keys, m-gets

Figure 2: Symmetric Representation.

11

u-keys, u-gets

n ‘sy@B6-n

she

sAey-n ‘sjeb-w

n
-keys, m-gets

v

Figure 3: Marking a Key.

	Introduction
	A Non-Redundant Representation
	A Symmetric Representation
	Worst Case Complexity Measure
	Actual Implementation and Measurement
	Incremental Collection
	Usage for Membranes
	Conclusions

