-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
207 lines (150 loc) · 5.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import torch
import kornia.geometry as KG
from scipy.spatial.transform import Rotation
import torch.nn.functional as F
def compute_P_from_KT(K, T):
P = torch.matmul(K, torch.linalg.inv(T))
return P
def umeyama_alignment(x, y, with_scale=True):
"""
Computes the least squares solution parameters of an Sim(m) matrix
that minimizes the distance between a set of registered points.
Umeyama, Shinji: Least-squares estimation of transformation parameters
between two point patterns. IEEE PAMI, 1991
:param x: mxn matrix of points, m = dimension, n = nr. of data points
:param y: mxn matrix of points, m = dimension, n = nr. of data points
:param with_scale: set to True to align also the scale (default: 1.0 scale)
:return: r, t, c - rotation matrix, translation vector and scale factor
"""
if x.shape != y.shape:
assert False, "x.shape not equal to y.shape"
# m = dimension, n = nr. of data points
m, n = x.shape
# means, eq. 34 and 35
mean_x = x.mean(axis=1)
mean_y = y.mean(axis=1)
# variance, eq. 36
# "transpose" for column subtraction
sigma_x = 1.0 / n * (np.linalg.norm(x - mean_x[:, np.newaxis])**2)
# covariance matrix, eq. 38
outer_sum = np.zeros((m, m))
for i in range(n):
outer_sum += np.outer((y[:, i] - mean_y), (x[:, i] - mean_x))
cov_xy = np.multiply(1.0 / n, outer_sum)
# SVD (text betw. eq. 38 and 39)
u, d, v = np.linalg.svd(cov_xy)
# S matrix, eq. 43
s = np.eye(m)
if np.linalg.det(u) * np.linalg.det(v) < 0.0:
# Ensure a RHS coordinate system (Kabsch algorithm).
s[m - 1, m - 1] = -1
# rotation, eq. 40
r = u.dot(s).dot(v)
# scale & translation, eq. 42 and 41
c = 1 / sigma_x * np.trace(np.diag(d).dot(s)) if with_scale else 1.0
t = mean_y - np.multiply(c, r.dot(mean_x))
return r, t, c
def pose_alignment(poses_pred, poses_gt):
xyz_result = poses_pred[:, :3, 3].T
xyz_gt = poses_gt[:, :3, 3].T
r, t, scale = umeyama_alignment(xyz_result, xyz_gt, with_scale=True)
align_transformation = np.eye(4)
align_transformation[:3:, :3] = r
align_transformation[:3, 3] = t
for cnt in range(poses_pred.shape[0]):
poses_pred[cnt][:3, 3] *= scale
poses_pred[cnt] = align_transformation @ poses_pred[cnt]
return poses_pred
def rotation_error(pose_error):
"""Compute rotation error
Args:
pose_error (4x4 array): relative pose error
Returns:
rot_error (float): rotation error
"""
r_diff = Rotation.from_matrix(pose_error[:3, :3])
pose_error = r_diff.as_matrix()
a = pose_error[0, 0]
b = pose_error[1, 1]
c = pose_error[2, 2]
d = 0.5*(a+b+c-1.0)
rot_error = np.arccos(max(min(d, 1.0), -1.0))
return rot_error
def translation_error(pose_error):
"""Compute translation error
Args:
pose_error (4x4 array): relative pose error
Returns:
trans_error (float): translation error
"""
dx = pose_error[0, 3]
dy = pose_error[1, 3]
dz = pose_error[2, 3]
trans_error = np.sqrt(dx**2+dy**2+dz**2)
return trans_error
def compute_rpe(gt, pred):
trans_errors = []
rot_errors = []
for i in range(len(gt)-1):
gt1 = gt[i]
gt2 = gt[i+1]
gt_rel = np.linalg.inv(gt1) @ gt2
pred1 = pred[i]
pred2 = pred[i+1]
pred_rel = np.linalg.inv(pred1) @ pred2
rel_err = np.linalg.inv(gt_rel) @ pred_rel
trans_errors.append(translation_error(rel_err))
rot_errors.append(rotation_error(rel_err))
return np.array(rot_errors), np.array(trans_errors)
def compute_ATE(gt, pred):
"""Compute RMSE of ATE
Args:
gt: ground-truth poses
pred: predicted poses
"""
r_errs = []
t_errs = []
for i in range(len(pred)):
# cur_gt = np.linalg.inv(gt_0) @ gt[i]
cur_gt = gt[i]
gt_xyz = cur_gt[:3, 3]
# cur_pred = np.linalg.inv(pred_0) @ pred[i]
cur_pred = pred[i]
pred_xyz = cur_pred[:3, 3]
align_err = gt_xyz - pred_xyz
rot_err = rotation_error(np.linalg.inv(cur_gt) @ cur_pred)
r_errs.append(rot_err)
t_errs.append(np.sqrt(np.sum(align_err ** 2)))
# ate = np.sqrt(np.mean(np.asarray(errors) ** 2))
return np.array(r_errs), np.array(t_errs)
def compute_epipolar_err(ref_xy, src_xy, P1, P2):
Fm = KG.epipolar.fundamental_from_projections(P1[None, :3], P2[None, :3])
err = KG.symmetrical_epipolar_distance(ref_xy[None],
src_xy[None],
Fm,
squared=False,
eps=1e-08)
return err.squeeze()
def evaluate_pose(intrinsic, pose, P_src_list, match_list, num_pairs, inlier_threshold):
P_ref = compute_P_from_KT(intrinsic, pose)
inlier_rates = []
errs = []
loss = 0
for idx, m in enumerate(match_list):
epi_err = compute_epipolar_err(m[:, 0:2],
m[:, 2:4],
P_ref,
P_src_list[idx])
inlier_mask = epi_err < inlier_threshold
inlier_rate = inlier_mask.float().mean()
inlier_rates.append(inlier_rate)
if inlier_rate > 0:
errs.append(epi_err)
weight = inlier_rate * inlier_rate
loss += weight * F.huber_loss(epi_err[inlier_mask], torch.zeros_like(epi_err[inlier_mask]))
if len(errs) > num_pairs:
break
avg_inlier_rate = torch.stack(inlier_rates).mean()
loss = loss / num_pairs
return avg_inlier_rate, loss