forked from aqeelanwar/SocialDistancingAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaux_functions.py
167 lines (136 loc) · 4.91 KB
/
aux_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import cv2
import numpy as np
from scipy.spatial.distance import pdist, squareform
def plot_lines_between_nodes(warped_points, bird_image, d_thresh):
p = np.array(warped_points)
dist_condensed = pdist(p)
dist = squareform(dist_condensed)
# Close enough: 10 feet mark
dd = np.where(dist < d_thresh * 6 / 10)
close_p = []
color_10 = (80, 172, 110)
lineThickness = 4
ten_feet_violations = len(np.where(dist_condensed < 10 / 6 * d_thresh)[0])
for i in range(int(np.ceil(len(dd[0]) / 2))):
if dd[0][i] != dd[1][i]:
point1 = dd[0][i]
point2 = dd[1][i]
close_p.append([point1, point2])
cv2.line(
bird_image,
(p[point1][0], p[point1][1]),
(p[point2][0], p[point2][1]),
color_10,
lineThickness,
)
# Really close: 6 feet mark
dd = np.where(dist < d_thresh)
six_feet_violations = len(np.where(dist_condensed < d_thresh)[0])
total_pairs = len(dist_condensed)
danger_p = []
color_6 = (52, 92, 227)
for i in range(int(np.ceil(len(dd[0]) / 2))):
if dd[0][i] != dd[1][i]:
point1 = dd[0][i]
point2 = dd[1][i]
danger_p.append([point1, point2])
cv2.line(
bird_image,
(p[point1][0], p[point1][1]),
(p[point2][0], p[point2][1]),
color_6,
lineThickness,
)
# Display Birdeye view
cv2.imshow("Bird Eye View", bird_image)
cv2.waitKey(1)
return six_feet_violations, ten_feet_violations, total_pairs
def plot_points_on_bird_eye_view(frame, pedestrian_boxes, M, scale_w, scale_h):
frame_h = frame.shape[0]
frame_w = frame.shape[1]
node_radius = 10
color_node = (192, 133, 156)
thickness_node = 20
solid_back_color = (41, 41, 41)
blank_image = np.zeros(
(int(frame_h * scale_h), int(frame_w * scale_w), 3), np.uint8
)
blank_image[:] = solid_back_color
warped_pts = []
for i in range(len(pedestrian_boxes)):
mid_point_x = int(
(pedestrian_boxes[i][1] * frame_w + pedestrian_boxes[i][3] * frame_w) / 2
)
mid_point_y = int(
(pedestrian_boxes[i][0] * frame_h + pedestrian_boxes[i][2] * frame_h) / 2
)
pts = np.array([[[mid_point_x, mid_point_y]]], dtype="float32")
warped_pt = cv2.perspectiveTransform(pts, M)[0][0]
warped_pt_scaled = [int(warped_pt[0] * scale_w), int(warped_pt[1] * scale_h)]
warped_pts.append(warped_pt_scaled)
bird_image = cv2.circle(
blank_image,
(warped_pt_scaled[0], warped_pt_scaled[1]),
node_radius,
color_node,
thickness_node,
)
return warped_pts, bird_image
def get_camera_perspective(img, src_points):
IMAGE_H = img.shape[0]
IMAGE_W = img.shape[1]
src = np.float32(np.array(src_points))
dst = np.float32([[0, IMAGE_H], [IMAGE_W, IMAGE_H], [0, 0], [IMAGE_W, 0]])
M = cv2.getPerspectiveTransform(src, dst)
M_inv = cv2.getPerspectiveTransform(dst, src)
return M, M_inv
def put_text(frame, text, text_offset_y=25):
font_scale = 0.8
font = cv2.FONT_HERSHEY_SIMPLEX
rectangle_bgr = (35, 35, 35)
(text_width, text_height) = cv2.getTextSize(
text, font, fontScale=font_scale, thickness=1
)[0]
# set the text start position
text_offset_x = frame.shape[1] - 400
# make the coords of the box with a small padding of two pixels
box_coords = (
(text_offset_x, text_offset_y + 5),
(text_offset_x + text_width + 2, text_offset_y - text_height - 2),
)
frame = cv2.rectangle(
frame, box_coords[0], box_coords[1], rectangle_bgr, cv2.FILLED
)
frame = cv2.putText(
frame,
text,
(text_offset_x, text_offset_y),
font,
fontScale=font_scale,
color=(255, 255, 255),
thickness=1,
)
return frame, 2 * text_height + text_offset_y
def calculate_stay_at_home_index(total_pedestrians_detected, frame_num, fps):
normally_people = 10
pedestrian_per_sec = np.round(total_pedestrians_detected / frame_num, 1)
sh_index = 1 - pedestrian_per_sec / normally_people
return pedestrian_per_sec, sh_index
def plot_pedestrian_boxes_on_image(frame, pedestrian_boxes):
frame_h = frame.shape[0]
frame_w = frame.shape[1]
thickness = 2
# color_node = (192, 133, 156)
color_node = (160, 48, 112)
# color_10 = (80, 172, 110)
for i in range(len(pedestrian_boxes)):
pt1 = (
int(pedestrian_boxes[i][1] * frame_w),
int(pedestrian_boxes[i][0] * frame_h),
)
pt2 = (
int(pedestrian_boxes[i][3] * frame_w),
int(pedestrian_boxes[i][2] * frame_h),
)
frame_with_boxes = cv2.rectangle(frame, pt1, pt2, color_node, thickness)
return frame_with_boxes