-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlive_dope_hand_realsense.py
321 lines (250 loc) · 9.61 KB
/
live_dope_hand_realsense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
from cuboid import *
from detector_dope import *
import yaml
import pyrealsense2 as rs
from PIL import Image
from PIL import ImageDraw
import time
# imports for yolo-hand
import cv2
import utils_orgyolo as uyolo
from darknet import Darknet
### Code to visualize the neural network output
def DrawLine(point1, point2, lineColor, lineWidth):
'''Draws line on image'''
global g_draw
if not point1 is None and point2 is not None:
g_draw.line([point1, point2], fill=lineColor, width=lineWidth)
def DrawDot(point, pointColor, pointRadius):
'''Draws dot (filled circle) on image'''
global g_draw
if point is not None:
xy = [
point[0] - pointRadius,
point[1] - pointRadius,
point[0] + pointRadius,
point[1] + pointRadius
]
g_draw.ellipse(xy,
fill=pointColor,
outline=pointColor
)
def DrawCube(points, color=(255, 0, 0)):
'''
Draws cube with a thick solid line across
the front top edge and an X on the top face.
'''
lineWidthForDrawing = 2
# draw front
DrawLine(points[0], points[1], color, lineWidthForDrawing)
DrawLine(points[1], points[2], color, lineWidthForDrawing)
DrawLine(points[3], points[2], color, lineWidthForDrawing)
DrawLine(points[3], points[0], color, lineWidthForDrawing)
# draw back
DrawLine(points[4], points[5], color, lineWidthForDrawing)
DrawLine(points[6], points[5], color, lineWidthForDrawing)
DrawLine(points[6], points[7], color, lineWidthForDrawing)
DrawLine(points[4], points[7], color, lineWidthForDrawing)
# draw sides
DrawLine(points[0], points[4], color, lineWidthForDrawing)
DrawLine(points[7], points[3], color, lineWidthForDrawing)
DrawLine(points[5], points[1], color, lineWidthForDrawing)
DrawLine(points[2], points[6], color, lineWidthForDrawing)
# draw dots
DrawDot(points[0], pointColor=color, pointRadius=4)
DrawDot(points[1], pointColor=color, pointRadius=4)
# draw x on the top
DrawLine(points[0], points[5], color, lineWidthForDrawing)
DrawLine(points[1], points[4], color, lineWidthForDrawing)
# Functions for utilizing hand detection
def crop_image(image, center, newSize, plot=False):
x_center, y_center = center
w_new, h_new = newSize
h_org, w_org, ch = image.shape
x_start = x_center - int(w_new/2)
x_end = x_center + int(w_new/2)
y_start = y_center - int(h_new/2)
y_end = y_center + int(h_new/2)
if x_start < 0:
x_end += abs(x_start)
x_start += abs(x_start)
elif x_end > w_org:
x_start -= x_end-w_org
x_end -= x_end-w_org-1
if y_start < 0:
y_end += abs(y_start)
y_start += abs(y_start)
elif y_end > h_org:
y_start -= y_end-h_org
y_end -= y_end-h_org-1
img_cropped = image[y_start:y_end, x_start:x_end, :]
if plot:
img_plot = image.copy()
cv2.rectangle(img_plot, (x_start, y_start), (x_end, y_end), (0, 255, 0), 2)
return img_cropped, [x_start, x_end, y_start, y_end], img_plot
else:
return img_cropped, [x_start, x_end, y_start, y_end]
def adjust_gamma(image, gamma=1.0):
# build a lookup table mapping the pixel values [0, 255] to
# their adjusted gamma values
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
#######################################################
# Settings
#######################################################
exposure_val = 1000 # 166 is the default exposure value (1-10000)
use_hand_tracking = True
gamma_correction = False
hand_crop_size = [200, 200]
pose_conf_thresh = 0.5
hand_conf_thresh = 0.6
gamma_val = 2
test_width = 640
test_height = 480
fps = 30
use_cuda = True
datacfg = {'hands': 'cfg/hands.data'}
cfgfile = {'hands': 'cfg/yolo-hands.cfg',
'cautery': 'cfg/my_config_realsense.yaml'}
weightfile = {'hands': 'backup/hands/000500.weights'}
namesfile = {'hands': 'data/hands.names'}
#######################################################
# Setting up YOLO-hand
#######################################################
model_hand = Darknet(cfgfile['hands'])
model_hand.load_weights(weightfile['hands'])
print('Loading weights from %s... Done!' % (weightfile['hands']))
if use_cuda:
model_hand.cuda()
class_names = uyolo.load_class_names(namesfile['hands'])
#######################################################
# Setting up DOPE
#######################################################
yaml_path = cfgfile['cautery']
with open(yaml_path, 'r') as stream:
try:
print("Loading DOPE parameters from '{}'...".format(yaml_path))
params = yaml.load(stream)
print(' Parameters loaded.')
except yaml.YAMLError as exc:
print(exc)
models = {}
pnp_solvers = {}
pub_dimension = {}
draw_colors = {}
# Initialize parameters
matrix_camera = np.zeros((3,3))
matrix_camera[0,0] = params["camera_settings"]['fx']
matrix_camera[1,1] = params["camera_settings"]['fy']
matrix_camera[0,2] = params["camera_settings"]['cx']
matrix_camera[1,2] = params["camera_settings"]['cy']
matrix_camera[2,2] = 1
dist_coeffs = np.zeros((4,1))
if "dist_coeffs" in params["camera_settings"]:
dist_coeffs = np.array(params["camera_settings"]['dist_coeffs'])
config_detect = lambda: None
config_detect.mask_edges = 1
config_detect.mask_faces = 1
config_detect.vertex = 1
config_detect.threshold = pose_conf_thresh
config_detect.softmax = 1000
config_detect.thresh_angle = params['thresh_angle']
config_detect.thresh_map = params['thresh_map']
config_detect.sigma = params['sigma']
config_detect.thresh_points = params["thresh_points"]
# For each object to detect, load network model, create PNP solver, and start ROS publishers
for model in params['weights']:
models[model] = \
ModelData(
model,
"backup/dope/" + params['weights'][model]
)
models[model].load_net_model()
draw_colors[model] = tuple(params["draw_colors"][model])
pnp_solvers[model] = \
CuboidPNPSolver(
model,
matrix_camera,
Cuboid3d(params['dimensions'][model]),
dist_coeffs=dist_coeffs
)
#######################################################
# Setting up Intel RealSense Camera
#######################################################
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, test_width, test_height, rs.format.bgr8, fps)
profile = pipeline.start(config)
# Setting exposure
s = profile.get_device().query_sensors()[1]
s.set_option(rs.option.exposure, exposure_val)
#######################################################
# Running camera and processing
#######################################################
while True:
# Reading image from camera
t_start = time.time()
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
if not color_frame:
continue
img = np.asanyarray(color_frame.get_data())
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Converting image to RGB as DOPE expects RGB. YOLO is trained to invariant.
# Gamma(Optional) Correction
if gamma_correction:
img = adjust_gamma(img, gamma=gamma_val)
# YOLO stuff
if use_hand_tracking:
sized = cv2.resize(img, (model_hand.width, model_hand.height))
bboxes = uyolo.do_detect(model_hand, sized, hand_conf_thresh, 0.4, use_cuda)
if any(bboxes):
center = [int(bboxes[0][0] * test_width), int(bboxes[0][1] * test_height)]
img_hand_cropped, crop_box = crop_image(img, center, hand_crop_size)
img_detection = img_hand_cropped
# print(crop_box[3])
else:
img_detection = img
else:
img_detection = img
# DOPE pose detection
for m in models:
# Detect object
t_start_dope = time.time()
results = ObjectDetector.detect_object_in_image(
models[m].net,
pnp_solvers[m],
img_detection,
config_detect
)
t_end_dope = time.time()
# Overlay cube on image. Copy and draw image
img_copy = img_detection.copy()
img_draw = Image.fromarray(img_copy)
g_draw = ImageDraw.Draw(img_draw)
for i_r, result in enumerate(results):
if result["location"] is None:
continue
loc = result["location"]
ori = result["quaternion"]
# Draw the cube
if None not in result['projected_points']:
points2d = []
for pair in result['projected_points']:
points2d.append(tuple(pair))
DrawCube(points2d, draw_colors[m])
img_draw = np.array(img_draw)# Converstion to cv2 image (numpy array)
# Stitching the cropped image if hand detected
if use_hand_tracking and any(bboxes):
img[crop_box[2]:crop_box[3], crop_box[0]:crop_box[1], :] = img_draw
img_draw = img
cv2.rectangle(img_draw, (crop_box[0],crop_box[2]), (crop_box[1],crop_box[3]), color=(0,255,0))
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR)
cv2.imshow('Open_cv_image', img_draw)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
t_end = time.time()
print('Overall FPS: {}, DOPE fps: {}'.format(1/(t_end-t_start), 1/(t_end_dope-t_start_dope)))