-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathalpaca_generate.py
141 lines (122 loc) · 4.2 KB
/
alpaca_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import sys
import json
import re
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
import fire
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from tqdm import tqdm
from alpaca_lora_utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "decapoda-research/llama-7b-hf",# decapoda-research/llama-13b-hf
lora_weights: str = "tloen/alpaca-lora-7b",# chansung/gpt4-alpaca-lora-13b、tloen/alpaca-lora-7b
prompt_template: str = "", # The prompt template to use, will default to alpaca.
data_path: str = "GPT_50", # GPT_50 or heuristic_100
output_file_name: str = "alpaca_finetune" # alpaca or alpaca_finetune
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (base_model), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(base_model, device_map={"": device}, low_cpu_mem_usage=True)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=256,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
with open(f"./data/{data_path}/generated_cases.json", mode='r', encoding="utf8") as f:
cases = json.load(f)
results = list()
for case in tqdm(cases):
match = re.search(r'###(.*?)###', case, re.DOTALL)
content = match.group(1)
result = evaluate(content)
results.append(result)
if not os.path.exists(f'./data/{data_path}/{output_file_name}/'):
os.makedirs(f'./data/{data_path}/{output_file_name}/')
with open(f'./data/{data_path}/{output_file_name}/{output_file_name}_output.json', 'w', encoding="utf8") as file:
json.dump(
results,
file,
ensure_ascii=False,
)
if __name__ == "__main__":
fire.Fire(main)