-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
52 lines (42 loc) · 1.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# train.py
import torch
import torch.optim as optim
from models.vit import VisionTransformer
from models.hybrid import HybridCNNMLP
from models.resnet import ResNetTransferLearning
from preprocessing import load_data
import torch.nn.functional as F
import matplotlib.pyplot as plt
import time
import torch.nn as nn
# Load Data
trainloader, testloader = load_data()
# Model Initialization
model = VisionTransformer() # Change to HybridCNNMLP() or ResNetTransferLearning() for other models
optimizer = optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()
# Training Loop
def train_model():
model.train()
for epoch in range(10): # You can adjust the number of epochs
start_time = time.time()
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in trainloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(trainloader)
epoch_acc = 100 * correct / total
print(f"Epoch [{epoch+1}/10], Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%")
print(f"Time taken for epoch: {time.time() - start_time:.2f} seconds")
# Save model after training or after each epoch
torch.save(model.state_dict(), 'model_epoch_{}.pth'.format(epoch+1))
train_model()