-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
310 lines (275 loc) · 16.7 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import time
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer)
from utils.torch_utils import select_device, load_classifier, time_synchronized
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
import argparse
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import cv2
from pylab import *
from matplotlib.pyplot import ginput, ion, ioff
sys.path.insert(0, './yolov8')
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
def bbox_rel(image_width, image_height, *xyxy):
"""" Calculates the relative bounding box from absolute pixel values. """
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
x_c = (bbox_left + bbox_w / 2)
y_c = (bbox_top + bbox_h / 2)
w = bbox_w
h = bbox_h
return x_c, y_c, w, h
def Estimated_speed(locations, fps, width):
present_IDs = []
prev_IDs = []
work_IDs = []
work_IDs_index = []
work_IDs_prev_index = []
work_locations = [] # Current frame data: center x coordinate, center y coordinate, target serial number, vehicle category, vehicle pixel width
work_prev_locations = [] # The format of the previous frame is the same
speed = []
for i in range(len(locations[1])):
present_IDs.append(locations[1][i][2]) # Gets the ID of the vehicle tracked in the current frame
for i in range(len(locations[0])):
prev_IDs.append(locations[0][i][2]) # Gets the ID traced to the vehicle in the previous frame
for m, n in enumerate(present_IDs):
if n in prev_IDs: # Filter to find valid vehicle ids detected in both frames and store them in work_IDs
work_IDs.append(n)
work_IDs_index.append(m)
for x in work_IDs_index: # Stores the information about the vehicles effectively detected by the current frame in work_locations
work_locations.append(locations[1][x])
for y, z in enumerate(prev_IDs):
if z in work_IDs: # The ID index of the last valid detected vehicle is stored in the work_IDs_prev_index
work_IDs_prev_index.append(y)
for x in work_IDs_prev_index: # Store the information about the vehicle that was effectively detected in the previous frame in work_prev_locations
work_prev_locations.append(locations[0][x])
for i in range(len(work_IDs)):
speed.append(
math.sqrt((work_locations[i][0] - work_prev_locations[i][0]) ** 2 + # Calculate the speed of the efficiently detected vehicle using a linear mapping from pixel distance to real space distance
(work_locations[i][1] - work_prev_locations[i][1]) ** 2) * # When the video shooting Angle is not perpendicular to the vehicle's moving trajectory, the measured speed will be lower than the actual speed
width[work_locations[i][3]] / (work_locations[i][4]) * fps / 5 * 3.6 * 2)
for i in range(len(speed)):
speed[i] = [round(speed[i], 1), work_locations[i][2]] # The vehicle speed in km/h, with one decimal place reserved, and its ID are stored in the SPEED two-dimensional list
return speed
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Get the frame width and height of the video
capture = cv2.VideoCapture(source)
frame_fature = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
# deepsort module initialization
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Set the real width of each vehicle type and the braking time after human brain reaction
width = [0, 0.2, 1.85, 0.5, 0, 2.3, 0, 2.5] # Actual width of bicycle, car, motorcycle, bus, truck, unit m
time_person = 3 # Set the braking time after the human brain reaction, the unit is s, that is, the time from the human reaction to the brake stop of the vehicle
locations = []
speed = []
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Change the display image size (custom function)
def cv_show(p, im0):
height, width = im0.shape[:2]
a = 1200 / width
size = (1200, int(height * a))
img_resize = cv2.resize(im0, size, interpolation=cv2.INTER_AREA)
cv2.imshow(p, img_resize)
cv2.waitKey(1) # 1 millisecond
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# ---------------------------speed------------------------------------------#
bbox_xywh = []
confs = []
classes = []
img_h, img_w, _ = im0.shape
# Adjust the im0 detection result to the input data type of deepsort
for *xyxy, conf, cls in det:
x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
obj = [x_c, y_c, bbox_w, bbox_h]
bbox_xywh.append(obj)
confs.append([conf.item()])
classes.append([cls.item()])
xywhs = torch.Tensor(bbox_xywh) # Call the __init__ constructor of the Tensor class to generate a tensor of single-precision floating-point type
confss = torch.Tensor(confs)
classes = torch.Tensor(classes)
# Input the adjusted results into deepsort and track them
outputs = deepsort.update(xywhs, confss, im0, classes)
box_centers = []
for i, each_box in enumerate(outputs):
# Find the center point of each box
if each_box[5] == 1 or each_box[5] == 2 or each_box[5] == 3 or each_box[5] == 5 or each_box[5] == 7:
box_centers.append([(each_box[0] + each_box[2]) / 2, (each_box[1] + each_box[3]) / 2, each_box[4],
each_box[5], each_box[2] - each_box[0]])
location = box_centers
# The target center coordinates and vehicle ID detected by each frame are written into txt to achieve trajectory tracking
if len(location) != 0:
with open('track.txt', 'a+') as track_record:
track_record.write('frame:%s\n' % str(frame_idx))
for j in range(len(location)):
track_record.write('id:%s,x:%s,y:%s\n' % (str(location[j][2]), str(location[j][0]), str(location[j][1])))
print('done!')
locations.append(location)
print(len(locations))
# The speed measurement data is written every five frames to measure the speed
if len(locations) == 5:
if len(locations[0]) and len(locations[-1]) != 0:
locations = [locations[0], locations[-1]]
speed = Estimated_speed(locations, fps, width)
with open('speed.txt', 'a+') as speed_record:
for sp in speed:
speed_record.write('id:%s %skm/h\n' % (str(sp[1]), str(sp[0]))) # Write the speed of each car to speed.txt in the root directory of the project
locations = []
# Write results
for *xyxy, conf, cls in reversed(det):
conf2 = float(f'{conf:.2f}')
if conf2 > 0.40: # When the confidence level is less than 0.4, the detection box is not displayed
# if the detected target belongs to one of the bicycle, car, motorcycle, bus and truck, range and exclude the interference of other irrelevant goal
if names[int(cls)] == 'bicycle' or names[int(cls)] == 'car' or names[int(cls)] == 'motorcycle' or names[int(cls)] == 'bus' or names[int(cls)] == 'truck':
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, speed, outputs, time_person, label=label, color=[0, 0, 255], line_thickness=3,
name=names[int(cls)]) # Call the function to range different categories and draw the target box
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results,
if view_img:
cv_show(str(p), im0) # The custom function has the resize function to reconstruct the image size. Note that the image size cannot be directly resize before detection, which will affect the ranging result
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov8s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='video.mp4', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.01, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.01, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results',default=True)
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument("--config_deepsort", type=str, default="deep_sort/configs/deep_sort.yaml")
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()