-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecourse_utils.py
151 lines (116 loc) · 3.74 KB
/
recourse_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import choix
import numpy as np
from sklearn.linear_model import LogisticRegression, LinearRegression
import lime
import lime.lime_tabular
from sklearn.base import BaseEstimator, TransformerMixin
#Find indices where reocourse is needed
def recourse_needed(predict_fn, X, target=1):
return np.where(predict_fn(X) == 1-target)[0]
#Recourse validity
def recourse_validity(predict_fn, rs, target=1):
return sum(predict_fn(rs)==target)/len(rs)
#Simulated pairwise feature costs
class PFC():
def __init__(self, n_feat, n_cmps=100, seed=0):
self.n_feat = n_feat
self.n_cmps = n_cmps
self.seed = seed
def gen_feat_cmps(self):
np.random.seed(self.seed)
cmps = []
for i in range(self.n_feat):
for j in range(self.n_feat):
if i!=j:
for _ in range(int(self.n_cmps/2)):
if np.random.uniform()<0.5:
cmps.append((i,j))
else:
cmps.append((j,i))
return cmps
def get_costs(self):
feat_cmps = self.gen_feat_cmps()
feature_costs = choix.ilsr_pairwise(n_items=self.n_feat, data=feat_cmps, alpha=0.01)
feature_costs = feature_costs-min(feature_costs) #shift to >=
return feature_costs
#Functions to compute the cost of recourses
def l1_cost(xs, rs):
cost = []
for x,r in zip(xs,rs):
cost.append(np.linalg.norm(r-x,1))
return np.mean(np.array(cost))
def pfc_cost(xs, rs, feature_costs):
costs = []
for x,r in zip(xs,rs):
cost = np.matmul(feature_costs, np.abs(r-x))
costs.append(cost)
return np.mean(np.array(costs))
#LIME wrapper for non-linear base models
def lime_explanation(model_pred_proba, X_train, x):
explainer = lime.lime_tabular.LimeTabularExplainer(training_data = X_train,
discretize_continuous=False,
feature_selection='none')
exp = explainer.explain_instance(x,
model_pred_proba,
num_features=X_train.shape[1],
model_regressor=LogisticRegression())
coefficients = exp.local_exp[1][0][1]
intercept = exp.intercept[1]
return coefficients, intercept
class GermanSCM():
def __init__(self, X):
self.f3 = LinearRegression()
self.f4 = LinearRegression()
self.personal_status_sex_cols = [c for c in list(X) if "personal_status_sex" in c]
self.f3.fit(X[self.personal_status_sex_cols+['age']], X['amount'])
self.f4.fit(X[['amount']], X['duration'])
self.idx_map = {c:i for i,c in enumerate(list(X))}
def act(self, x_og, grad):
rec = np.zeros(len(x_og))
x_og = x_og.flatten()
u1 = x_og[[self.idx_map[c] for c in self.personal_status_sex_cols]]
u2 = x_og[self.idx_map["age"]]
u3 = x_og[self.idx_map["amount"]] - self.f3.predict(
[x_og[[self.idx_map[c] for c in self.personal_status_sex_cols]+[self.idx_map["age"]]]])[0]
u4 = x_og[self.idx_map["duration"]] - self.f4.predict([[x_og[self.idx_map["age"]]]])[0]
grad = grad.flatten()
#u1 is immutable so a1 is not actionable
a2 = x_og[self.idx_map["age"]]+grad[self.idx_map["age"]]
a3 = x_og[self.idx_map["amount"]]+grad[self.idx_map["amount"]]
a4 = x_og[self.idx_map["duration"]]+grad[self.idx_map["duration"]]
x1 = u1
if grad[self.idx_map["age"]]>0:
x2 = a2
else:
x2 = u2
x3 = a3
x4 = a4
rec[[self.idx_map[c] for c in self.personal_status_sex_cols]] = x1
rec[self.idx_map["age"]] = x2
rec[self.idx_map["amount"]] = x3
rec[self.idx_map["duration"]] = x4
return rec
class SimDataSCM():
def __init__(self, X):
self.f2 = LinearRegression()
self.f2.fit(X[:,0], X[:,1])
def act(self, x_og, grad):
rec = np.zeros(len(x_og))
x_og = x_og.flatten()
u1 = x_og[0]
u2 = x_og[1]-self.f2.predict(x_og[0])[0]
grad = grad.flatten()
a1 = x_og[0]+grad[0]
a2 = x_og[1]+grad[1]
x1 = a1
x2 = a2
rec[0] = x1
rec[1] = x2
return rec
class DummyScaler(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self):
pass
def transform(self, X):
return X