-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
131 lines (97 loc) · 3.69 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# import all the required packages for implementing the yolo model
import cv2
import argparse
import numpy as np
# handle command line arguments
ap = argparse.ArgumentParser()
#add the arguments to the argument parser
ap.add_argument('-i', '--image', required=True,
help = 'path to input image')
ap.add_argument('-c', '--config', required=True,
help = 'path to yolo config file')
ap.add_argument('-w', '--weights', required=True,
help = 'path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,
help = 'path to text file containing class names')
arguments = ap.parse_args()
#Preparing for the input of the model
image = cv2.imread(arguments.images) # this will read the input image from the folder
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
# read class names from text file
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# generate different colors for different classes
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
# read pre-trained model and config file
net = cv2.dnn.readNet(args.weights, args.config)
# create input blob
blob = cv2.dnn.blobFromImage(image, scale, (416,416), (0,0,0), True, crop=False)
# set input blob for the network
net.setInput(blob)
net = cv.dnn.readnet(arguments.weights,arguments.configs)
blob = cv2.dnn.blobFromImage(image, scale, (Width,Height), (0,0,0), True, crop=False)
net.setInput(blob)
#Preparing for the output of the model
# function to get the output layer names
# in the architecture
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
# function to draw bounding box on the detected object with class name
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
#Running for the inference of the model
# run inference through the network
# and gather predictions from output layers
outs = net.forward(get_output_layers(net))
# initialization
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
# for each detetion from each output layer
# get the confidence, class id, bounding box params
# and ignore weak detections (confidence < 0.5)
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence >= 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# apply non-max suppression
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
# go through the detections remaining
# after nms and draw bounding box
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_bounding_box(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h))
# display output image
cv2.imshow("object detection", image)
# wait until any key is pressed
cv2.waitKey()
# save output image to disk
cv2.imwrite("object-detection.jpg", image)
# release resources
cv2.destroyAllWindows()