-
Notifications
You must be signed in to change notification settings - Fork 242
/
Copy patharg_parser.py
483 lines (471 loc) · 13.3 KB
/
arg_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
###########################################################################################
# Parsing functionalities
# Authors: Ilyes Batatia, Gregor Simm, David Kovacs
# This program is distributed under the MIT License (see MIT.md)
###########################################################################################
import argparse
from typing import Optional
def build_default_arg_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
# Name and seed
parser.add_argument("--name", help="experiment name", required=True)
parser.add_argument("--seed", help="random seed", type=int, default=123)
# Directories
parser.add_argument(
"--log_dir", help="directory for log files", type=str, default="logs"
)
parser.add_argument(
"--model_dir", help="directory for final model", type=str, default="."
)
parser.add_argument(
"--checkpoints_dir",
help="directory for checkpoint files",
type=str,
default="checkpoints",
)
parser.add_argument(
"--results_dir", help="directory for results", type=str, default="results"
)
parser.add_argument(
"--downloads_dir", help="directory for downloads", type=str, default="downloads"
)
# Device and logging
parser.add_argument(
"--device",
help="select device",
type=str,
choices=["cpu", "cuda", "mps"],
default="cpu",
)
parser.add_argument(
"--default_dtype",
help="set default dtype",
type=str,
choices=["float32", "float64"],
default="float64",
)
parser.add_argument("--log_level", help="log level", type=str, default="INFO")
parser.add_argument(
"--error_table",
help="Type of error table produced at the end of the training",
type=str,
choices=[
"PerAtomRMSE",
"TotalRMSE",
"PerAtomRMSEstressvirials",
"PerAtomMAE",
"TotalMAE",
"DipoleRMSE",
"DipoleMAE",
"EnergyDipoleRMSE",
],
default="PerAtomRMSE",
)
# Model
parser.add_argument(
"--model",
help="model type",
default="MACE",
choices=[
"BOTNet",
"MACE",
"ScaleShiftMACE",
"ScaleShiftBOTNet",
"AtomicDipolesMACE",
"EnergyDipolesMACE",
],
)
parser.add_argument(
"--r_max", help="distance cutoff (in Ang)", type=float, default=5.0
)
parser.add_argument(
"--num_radial_basis",
help="number of radial basis functions",
type=int,
default=8,
)
parser.add_argument(
"--num_cutoff_basis",
help="number of basis functions for smooth cutoff",
type=int,
default=5,
)
parser.add_argument(
"--interaction",
help="name of interaction block",
type=str,
default="RealAgnosticResidualInteractionBlock",
choices=[
"RealAgnosticResidualInteractionBlock",
"RealAgnosticInteractionBlock",
],
)
parser.add_argument(
"--interaction_first",
help="name of interaction block",
type=str,
default="RealAgnosticResidualInteractionBlock",
choices=[
"RealAgnosticResidualInteractionBlock",
"RealAgnosticInteractionBlock",
],
)
parser.add_argument(
"--max_ell", help=r"highest \ell of spherical harmonics", type=int, default=3
)
parser.add_argument(
"--correlation", help="correlation order at each layer", type=int, default=3
)
parser.add_argument(
"--num_interactions", help="number of interactions", type=int, default=2
)
parser.add_argument(
"--MLP_irreps",
help="hidden irreps of the MLP in last readout",
type=str,
default="16x0e",
)
parser.add_argument(
"--hidden_irreps",
help="irreps for hidden node states",
type=str,
default="32x0e",
)
# add option to specify irreps by channel number and max L
parser.add_argument(
"--num_channels",
help="number of embedding channels",
type=int,
default=None,
)
parser.add_argument(
"--max_L",
help="max L equivariance of the message",
type=int,
default=None,
)
parser.add_argument(
"--gate",
help="non linearity for last readout",
type=str,
default="silu",
choices=["silu", "tanh", "abs", "None"],
)
parser.add_argument(
"--scaling",
help="type of scaling to the output",
type=str,
default="rms_forces_scaling",
choices=["std_scaling", "rms_forces_scaling", "no_scaling"],
)
parser.add_argument(
"--avg_num_neighbors",
help="normalization factor for the message",
type=float,
default=1,
)
parser.add_argument(
"--compute_avg_num_neighbors",
help="normalization factor for the message",
type=bool,
default=True,
)
parser.add_argument(
"--compute_stress",
help="Select True to compute stress",
type=bool,
default=False,
)
parser.add_argument(
"--compute_forces",
help="Select True to compute forces",
type=bool,
default=True,
)
# Dataset
parser.add_argument(
"--train_file", help="Training set xyz file", type=str, required=True
)
parser.add_argument(
"--valid_file",
help="Validation set xyz file",
default=None,
type=str,
required=False,
)
parser.add_argument(
"--valid_fraction",
help="Fraction of training set used for validation",
type=float,
default=0.1,
required=False,
)
parser.add_argument(
"--test_file",
help="Test set xyz file",
type=str,
)
parser.add_argument(
"--E0s",
help="Dictionary of isolated atom energies",
type=str,
default=None,
required=False,
)
parser.add_argument(
"--energy_key",
help="Key of reference energies in training xyz",
type=str,
default="energy",
)
parser.add_argument(
"--forces_key",
help="Key of reference forces in training xyz",
type=str,
default="forces",
)
parser.add_argument(
"--virials_key",
help="Key of reference virials in training xyz",
type=str,
default="virials",
)
parser.add_argument(
"--stress_key",
help="Key of reference stress in training xyz",
type=str,
default="stress",
)
parser.add_argument(
"--dipole_key",
help="Key of reference dipoles in training xyz",
type=str,
default="dipole",
)
parser.add_argument(
"--charges_key",
help="Key of atomic charges in training xyz",
type=str,
default="charges",
)
# Loss and optimization
parser.add_argument(
"--loss",
help="type of loss",
default="weighted",
choices=[
"ef",
"weighted",
"forces_only",
"virials",
"stress",
"dipole",
"energy_forces_dipole",
],
)
parser.add_argument(
"--forces_weight", help="weight of forces loss", type=float, default=10.0
)
parser.add_argument(
"--swa_forces_weight",
help="weight of forces loss after starting swa",
type=float,
default=1.0,
)
parser.add_argument(
"--energy_weight", help="weight of energy loss", type=float, default=1.0
)
parser.add_argument(
"--swa_energy_weight",
help="weight of energy loss after starting swa",
type=float,
default=1000.0,
)
parser.add_argument(
"--virials_weight", help="weight of virials loss", type=float, default=1.0
)
parser.add_argument(
"--swa_virials_weight",
help="weight of virials loss after starting swa",
type=float,
default=10.0,
)
parser.add_argument(
"--stress_weight", help="weight of virials loss", type=float, default=1.0
)
parser.add_argument(
"--swa_stress_weight",
help="weight of stress loss after starting swa",
type=float,
default=10.0,
)
parser.add_argument(
"--dipole_weight", help="weight of dipoles loss", type=float, default=1.0
)
parser.add_argument(
"--swa_dipole_weight",
help="weight of dipoles after starting swa",
type=float,
default=1.0,
)
parser.add_argument(
"--config_type_weights",
help="String of dictionary containing the weights for each config type",
type=str,
default='{"Default":1.0}',
)
parser.add_argument(
"--optimizer",
help="Optimizer for parameter optimization",
type=str,
default="adam",
choices=["adam", "adamw"],
)
parser.add_argument("--batch_size", help="batch size", type=int, default=10)
parser.add_argument(
"--valid_batch_size", help="Validation batch size", type=int, default=10
)
parser.add_argument(
"--lr", help="Learning rate of optimizer", type=float, default=0.01
)
parser.add_argument(
"--swa_lr", help="Learning rate of optimizer in swa", type=float, default=1e-3
)
parser.add_argument(
"--weight_decay", help="weight decay (L2 penalty)", type=float, default=5e-7
)
parser.add_argument(
"--amsgrad",
help="use amsgrad variant of optimizer",
action="store_true",
default=True,
)
parser.add_argument(
"--scheduler", help="Type of scheduler", type=str, default="ReduceLROnPlateau"
)
parser.add_argument(
"--lr_factor", help="Learning rate factor", type=float, default=0.8
)
parser.add_argument(
"--scheduler_patience", help="Learning rate factor", type=int, default=50
)
parser.add_argument(
"--lr_scheduler_gamma",
help="Gamma of learning rate scheduler",
type=float,
default=0.9993,
)
parser.add_argument(
"--swa",
help="use Stochastic Weight Averaging, which decreases the learning rate and increases the energy weight at the end of the training to help converge them",
action="store_true",
default=False,
)
parser.add_argument(
"--start_swa",
help="Number of epochs before switching to swa",
type=int,
default=None,
)
parser.add_argument(
"--ema",
help="use Exponential Moving Average",
action="store_true",
default=False,
)
parser.add_argument(
"--ema_decay",
help="Exponential Moving Average decay",
type=float,
default=0.99,
)
parser.add_argument(
"--max_num_epochs", help="Maximum number of epochs", type=int, default=2048
)
parser.add_argument(
"--patience",
help="Maximum number of consecutive epochs of increasing loss",
type=int,
default=2048,
)
parser.add_argument(
"--eval_interval", help="evaluate model every <n> epochs", type=int, default=2
)
parser.add_argument(
"--keep_checkpoints",
help="keep all checkpoints",
action="store_true",
default=False,
)
parser.add_argument(
"--restart_latest",
help="restart optimizer from latest checkpoint",
action="store_true",
default=False,
)
parser.add_argument(
"--save_cpu",
help="Save a model to be loaded on cpu",
action="store_true",
default=False,
)
parser.add_argument(
"--clip_grad",
help="Gradient Clipping Value",
type=check_float_or_none,
default=10.0,
)
# options for using Weights and Biases for experiment tracking
# to install see https://wandb.ai
parser.add_argument(
"--wandb",
help="Use Weights and Biases for experiment tracking",
action="store_true",
default=False,
)
parser.add_argument(
"--wandb_project",
help="Weights and Biases project name",
type=str,
default="",
)
parser.add_argument(
"--wandb_entity",
help="Weights and Biases entity name",
type=str,
default="",
)
parser.add_argument(
"--wandb_name",
help="Weights and Biases experiment name",
type=str,
default="",
)
parser.add_argument(
"--wandb_log_hypers",
help="The hyperparameters to log in Weights and Biases",
type=list,
default=[
"num_channels",
"max_L",
"correlation",
"lr",
"swa_lr",
"weight_decay",
"batch_size",
"max_num_epochs",
"start_swa",
"energy_weight",
"forces_weight",
],
)
return parser
def check_float_or_none(value: str) -> Optional[float]:
try:
return float(value)
except ValueError:
if value != "None":
raise argparse.ArgumentTypeError(
f"{value} is an invalid value (float or None)"
) from None
return None