-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reconstructor.py
201 lines (156 loc) · 7.14 KB
/
train_reconstructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import csv
import shutil
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from torch.optim import Adam
import torch.multiprocessing as mp
from dataset.e_piano import create_embedding_datasets, create_epiano_datasets, compute_epiano_accuracy
from model.music_transformer import MusicTransformer
from model.reconstructor import Reconstructor
from model.loss import SmoothCrossEntropyLoss
from embedding_loss import EmbeddingLoss
from utilities.constants import *
from utilities.device import get_device, use_cuda
from utilities.lr_scheduling import LrStepTracker, get_lr
from utilities.argument_funcs import parse_train_reconstruction_args, print_train_reconstruction_args, write_model_params
from utilities.run_reconstructor import train_reconstructor_epoch, eval_reconstructor_model
from torch.cuda.amp import GradScaler, autocast
scaler = GradScaler()
CSV_HEADER = ["Epoch", "Learn rate", "Avg Train loss", "Avg Train Add loss", "Avg Train acc", "Avg Eval loss", "Avg Eval Add loss", "Avg Eval acc"]
# Baseline is an untrained epoch that we evaluate as a baseline loss and accuracy
BASELINE_EPOCH = -1
mp.set_start_method('spawn', force=True)
start = 1
# main
def main():
"""
----------
Author: Damon Gwinn
----------
Entry point. Trains a model specified by command line arguments
----------
"""
args = parse_train_reconstruction_args()
print_train_reconstruction_args(args)
os.makedirs(args.output_dir, exist_ok=True)
##### Output prep #####
params_file = os.path.join(args.output_dir, "model_params.txt")
write_model_params(args, params_file)
weights_folder = os.path.join(args.output_dir, "weights")
os.makedirs(weights_folder, exist_ok=True)
results_folder = os.path.join(args.output_dir, "results")
os.makedirs(results_folder, exist_ok=True)
results_file = os.path.join(results_folder, "results.csv")
best_loss_file = os.path.join(results_folder, "best_loss_weights.pickle")
best_acc_file = os.path.join(results_folder, "best_acc_weights.pickle")
best_text = os.path.join(results_folder, "best_epochs.txt")
##### Datasets #####
train_dataset, val_dataset, test_dataset = create_embedding_datasets(args.input_dir, args.max_sequence)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.n_workers, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.n_workers)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.n_workers)
train_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD)
eval_loss_func = train_loss_func
model = Reconstructor(n_layers=args.n_layers, num_heads=args.num_heads,
d_model=args.d_model, dim_feedforward=args.dim_feedforward, dropout=args.dropout,
max_sequence=args.max_sequence, rpr=args.rpr).to(get_device())
##### Continuing from previous training session #####
start_epoch = BASELINE_EPOCH + start
if (args.continue_weights is not None):
if (args.continue_epoch is None):
print("ERROR: Need epoch number to continue from (-continue_epoch) when using continue_weights")
return
else:
model.load_state_dict(torch.load(args.continue_weights))
start_epoch = args.continue_epoch
elif (args.continue_epoch is not None):
print("ERROR: Need continue weights (-continue_weights) when using continue_epoch")
return
if(args.lr is None):
if(args.continue_epoch is None):
init_step = 0
else:
init_step = args.continue_epoch * len(train_loader)
lr = LR_DEFAULT_START
lr_stepper = LrStepTracker(args.d_model, SCHEDULER_WARMUP_STEPS, init_step)
else:
lr = args.lr
#print(model.linear_embeddings.weight)
#print(model.linear_embeddings.weight.shape)
#raise ValueError()
##### Optimizer #####
opt = Adam(model.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON)
if(args.lr is None):
lr_scheduler = LambdaLR(opt, lr_stepper.step)
else:
lr_scheduler = None
##### Tracking best evaluation accuracy #####
best_eval_acc = 0.0
best_eval_acc_epoch = -1
best_eval_loss = float("inf")
best_eval_loss_epoch = -1
##### Results reporting #####
if(not os.path.isfile(results_file)):
with open(results_file, "w", newline="") as o_stream:
writer = csv.writer(o_stream)
writer.writerow(CSV_HEADER)
##### TRAIN LOOP #####
for epoch in range(start_epoch, args.epochs):
# Baseline has no training and acts as a base loss and accuracy (epoch 0 in a sense)
if(epoch > BASELINE_EPOCH):
print(SEPERATOR)
print("NEW EPOCH:", epoch+1)
print(SEPERATOR)
print("")
# Train
train_reconstructor_epoch(epoch+1, model, train_loader, train_loss_func, opt, lr_scheduler)
print(SEPERATOR)
print("Evaluating:")
else:
print(SEPERATOR)
print("Baseline model evaluation (Epoch 0):")
# Eval
train_loss, train_acc, train_add_loss = eval_reconstructor_model(model, train_loader, train_loss_func)
eval_loss, eval_acc, eval_add_loss = eval_reconstructor_model(model, test_loader, eval_loss_func)
# Learn rate
lr = get_lr(opt)
print("Epoch:", epoch+1)
print("Avg train loss:", train_loss)
print("Avg eval loss:", eval_loss)
print("Avg train add loss:", train_add_loss)
print("Avg eval add loss:", eval_add_loss)
print("Avg train acc:", train_acc)
print("Avg eval acc:", eval_acc)
print(SEPERATOR)
print("")
new_best = False
if(eval_loss < best_eval_loss):
best_eval_loss = eval_loss
best_eval_loss_epoch = epoch+1
torch.save(model.state_dict(), best_loss_file)
new_best = True
if(eval_acc < best_eval_acc):
best_eval_acc = eval_acc
best_eval_acc_epoch = epoch+1
torch.save(model.state_dict(), best_acc_file)
new_best = True
# Writing out new bests
if(new_best):
with open(best_text, "w") as o_stream:
print("Best eval loss epoch:", best_eval_loss_epoch, file=o_stream)
print("Best eval loss:", best_eval_loss, file=o_stream)
print("Best eval acc epoch:", best_eval_acc_epoch, file=o_stream)
print("Best eval acc:", best_eval_acc, file=o_stream)
if((epoch+1) % args.weight_modulus == 0):
epoch_str = str(epoch+1).zfill(PREPEND_ZEROS_WIDTH)
path = os.path.join(weights_folder, "epoch_" + epoch_str + ".pickle")
torch.save(model.state_dict(), path)
with open(results_file, "a", newline="") as o_stream:
writer = csv.writer(o_stream)
writer.writerow([epoch+1, lr, train_loss, train_add_loss, train_acc, eval_loss, eval_add_loss, eval_acc])
return
if __name__ == "__main__":
main()