forked from RaneemLoay/weather-data-analytics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
185 lines (153 loc) · 5.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
df = pd.read_csv('weatherAUS.csv')
print(df.shape)
print(df.info())
print(df.isna().sum())
#drop columns
df = df.drop(["Evaporation","Sunshine","Cloud9am","Cloud3pm","Location","Date"], axis =1)
##print(df.describe());
df = df.dropna(axis = 0);
print(df.shape)
print(df.duplicated())
df.drop_duplicates()
from sklearn.preprocessing import LabelEncoder
#transform categorical data to numeric
labeler = LabelEncoder()
df['RainToday'] = labeler.fit_transform(df['RainToday'])
df['RainTomorrow'] = labeler.fit_transform(df['RainTomorrow'])
df['WindDir9am'] = labeler.fit_transform(df['WindDir9am'])
df['WindDir3pm'] = labeler.fit_transform(df['WindDir3pm'])
df['WindGustDir'] = labeler.fit_transform(df['WindGustDir'])
print(df.head())
#Detect outliars by using IQR
Q1=np.percentile(df['WindGustSpeed'], 75)
Q3=np.percentile(df['WindGustSpeed'], 25)
#IQR = Q3-Q1
IQR = df.WindGustSpeed.describe()['75%'] - df.WindGustSpeed.describe()['25%']
print ("WindGustSpeed IQR : ",IQR)
# Calculate the minimum value and maximum value
min = Q1-1.5*IQR
max = Q3+1.5*IQR
print ("minimum value: ",min)
print ("maximum value: ",max)
plt.boxplot(df.WindGustSpeed,notch=True,vert=False)
plt.show()
Humidity9am_mean=df.Humidity9am.mean()
Humidity3pm_mean=df.Humidity3pm.mean()
Humidity9am_median=df.Humidity9am.median()
Humidity3pm_median=df.Humidity3pm.median()
Humidity9am_std=df.Humidity9am.std()
Humidity3pm_std=df.Humidity3pm.std()
Humidity9am_var=df.Humidity9am.var()
Humidity3pm_var=df.Humidity3pm.var()
print ("Humidity9am_mean : ", Humidity9am_mean)
print ("Humidity3pm_mean : ", Humidity3pm_mean)
print ("Humidity3pm_median : ", Humidity3pm_median)
print ("Humidity9am_median : ", Humidity9am_median)
print ("Humidity9am std : ", Humidity9am_std)
print ("Humidity3pm_std : ", Humidity3pm_std)
print ("Humidity3pm_var : ", Humidity3pm_var)
print ("Humidity9am var : ", Humidity9am_var)
X = df.drop(['RainTomorrow'], axis = 1)
Y = df['RainTomorrow']
##visualization##
#scatterplot matrix
df.hist(bins = 10 , figsize= (14,14))
plt.show()
#histogram for Maxtemp values
sns.histplot(x=df.MaxTemp)
plt.title("MaxTemp Distribution", color="red", fontsize=18)
plt.show()
# correlation heatmap
##using sns
# plt.figure(figsize=(8,8))
# sns.heatmap(df.corr())
# plt.show()
##using go
# Generate correlation matrix
df_corr = df.corr()
fig = go.Figure()
fig.add_trace(
go.Heatmap(
x = df_corr.columns,
y = df_corr.columns,
z = np.array(df_corr)
)
)
fig.show()
#scatterPlots
scatterPlot= px.scatter(df.sample(2000),
title='Min Temp. vs Max Temp.',
x='MinTemp',
y='MaxTemp',
color='RainToday')
scatterPlot.show()
#### It shows a linear positive correlation between minimum temperature and maximum temperature
scatterPlot= px.scatter(df.sample(2000),
title='Humidity vs Temp.',
x='Humidity3pm',
y='Temp3pm',
color='RainTomorrow')
scatterPlot.show()
#### It shows a linear negative correlation between humidity and temperature
#barPlot
sns.barplot(data=df, x="RainTomorrow", y="Rainfall")
plt.show()
#### The higher the rate of rain, the greater the probability of rain tomorrow
#pie chart
fig = px.pie(df, names='RainToday', title='RainToday',color_discrete_sequence=px.colors.sequential.RdBu)
fig.show()
from sklearn.model_selection import train_test_split
x_train , x_test , y_train , y_test = train_test_split(X,Y, test_size= 0.20 , random_state= 42)
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score, precision_score
# Random forest
model_1=RandomForestClassifier(max_depth=7 , max_features=3,n_estimators= 100)
model_1.fit(x_train,y_train)
Random_forest_prediction = model_1.predict(x_test)
print( confusion_matrix(y_test,Random_forest_prediction))
print('randomForest accuracy ' ,accuracy_score(y_test,Random_forest_prediction))
print( 'randomForest recall ' ,recall_score(y_test,Random_forest_prediction))
print( 'randomForest precision ',precision_score(y_test,Random_forest_prediction))
#DecisionTreeClassifier
model_2 = DecisionTreeClassifier()
model_2.fit(x_train,y_train)
DecisionTree_prediction = model_2.predict(x_test)
print(confusion_matrix(y_test,DecisionTree_prediction))
print('decisionTree accuracy' ,accuracy_score(y_test,DecisionTree_prediction))
print('decisionTree recall' , recall_score(y_test,DecisionTree_prediction))
print('decisionTree precision',precision_score(y_test,DecisionTree_prediction))
#naive bayes classifier (Multinomial)
model_3 = MultinomialNB()
model_3.fit(x_train.abs(),y_train.abs())
Multinomial_prediction = model_3.predict(x_test)
print(confusion_matrix(y_test,Multinomial_prediction))
print('mulinomial accuracy' , accuracy_score(y_test,Multinomial_prediction))
print('mulinomial recall' , recall_score(y_test,Multinomial_prediction, average='weighted'))
print('mulinomial precision', precision_score(y_test,Multinomial_prediction, average='weighted'))
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(max_iter=1000)
lr.fit(x_train,y_train)
predictions = lr.predict(x_test)
print(confusion_matrix(y_test, predictions))
print('LogisticRegression accuracy' ,accuracy_score(y_test, predictions))
# knn
model_4 = KNeighborsClassifier(3)
model_4.fit(x_train,y_train)
knn_prediction = model_4.predict(x_test)
print(confusion_matrix(y_test,knn_prediction))
print('knn accuracy' , accuracy_score(y_test,knn_prediction))
print('knn recall' , recall_score(y_test, knn_prediction, average='weighted'))
print('knn precision', precision_score(y_test,knn_prediction, average='weighted'))