-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhg_sdf.cginc
798 lines (687 loc) · 24.6 KB
/
hg_sdf.cginc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
////////////////////////////////////////////////////////////////
//
// HG_SDF
//
// GLSL LIBRARY FOR BUILDING SIGNED DISTANCE BOUNDS
//
// version 2016-01-10
//
// Check http://mercury.sexy/hg_sdf for updates
// and usage examples. Send feedback to spheretracing@mercury.sexy.
//
// Brought to you by MERCURY http://mercury.sexy
//
// Converted to HLSL by 00alia00
//
// Released as Creative Commons Attribution-NonCommercial (CC BY-NC)
//
////////////////////////////////////////////////////////////////
//
// How to use this:
//
// 1. Build some system to #include glsl files in each other.
// Include this one at the very start. Or just paste everywhere.
// 2. Build a sphere tracer. See those papers:
// * "Sphere Tracing" http://graphics.cs.illinois.edu/sites/default/files/zeno.pdf
// * "Enhanced Sphere Tracing" http://lgdv.cs.fau.de/get/2234
// The Raymnarching Toolbox Thread on pouet can be helpful as well
// http://www.pouet.net/topic.php?which=7931&page=1
// and contains links to many more resources.
// 3. Use the tools in this library to build your distance bound f().
// 4. ???
// 5. Win a compo.
//
// (6. Buy us a beer or a good vodka or something, if you like.)
//
////////////////////////////////////////////////////////////////
//
// Table of Contents:
//
// * Helper functions and macros
// * Collection of some primitive objects
// * Domain Manipulation operators
// * Object combination operators
//
////////////////////////////////////////////////////////////////
//
// Why use this?
//
// The point of this lib is that everything is structured according
// to patterns that we ended up using when building geometry.
// It makes it more easy to write code that is reusable and that somebody
// else can actually understand. Especially code on Shadertoy (which seems
// to be what everybody else is looking at for "inspiration") tends to be
// really ugly. So we were forced to do something about the situation and
// release this lib ;)
//
// Everything in here can probably be done in some better way.
// Please experiment. We'd love some feedback, especially if you
// use it in a scene production.
//
// The main patterns for building geometry this way are:
// * Stay Lipschitz continuous. That means: don't have any distance
// gradient larger than 1. Try to be as close to 1 as possible -
// Distances are euclidean distances, don't fudge around.
// Underestimating distances will happen. That's why calling
// it a "distance bound" is more correct. Don't ever multiply
// distances by some value to "fix" a Lipschitz continuity
// violation. The invariant is: each fSomething() function returns
// a correct distance bound.
// * Use very few primitives and combine them as building blocks
// using combine opertors that preserve the invariant.
// * Multiply objects by repeating the domain (space).
// If you are using a loop inside your distance function, you are
// probably doing it wrong (or you are building boring fractals).
// * At right-angle intersections between objects, build a new local
// coordinate system from the two distances to combine them in
// interesting ways.
// * As usual, there are always times when it is best to not follow
// specific patterns.
//
////////////////////////////////////////////////////////////////
//
// FAQ
//
// Q: Why is there no sphere tracing code in this lib?
// A: Because our system is way too complex and always changing.
// This is the constant part. Also we'd like everyone to
// explore for themselves.
//
// Q: This does not work when I paste it into Shadertoy!!!!
// A: Yes. It is GLSL, not GLSL ES. We like real OpenGL
// because it has way more features and is more likely
// to work compared to browser-based WebGL. We recommend
// you consider using OpenGL for your productions. Most
// of this can be ported easily though.
//
// Q: How do I material?
// A: We recommend something like this:
// Write a material ID, the distance and the local coordinate
// p into some global variables whenever an object's distance is
// smaller than the stored distance. Then, at the end, evaluate
// the material to get color, roughness, etc., and do the shading.
//
// Q: I found an error. Or I made some function that would fit in
// in this lib. Or I have some suggestion.
// A: Awesome! Drop us a mail at spheretracing@mercury.sexy.
//
// Q: Why is this not on github?
// A: Because we were too lazy. If we get bugged about it enough,
// we'll do it.
//
// Q: Your license sucks for me.
// A: Oh. What should we change it to?
//
// Q: I have trouble understanding what is going on with my distances.
// A: Some visualization of the distance field helps. Try drawing a
// plane that you can sweep through your scene with some color
// representation of the distance field at each point and/or iso
// lines at regular intervals. Visualizing the length of the
// gradient (or better: how much it deviates from being equal to 1)
// is immensely helpful for understanding which parts of the
// distance field are broken.
//
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
//
// HELPER FUNCTIONS/MACROS
//
////////////////////////////////////////////////////////////////
#define PI 3.14159265
#define TAU (2*PI)
#define PHI (sqrt(5)*0.5 + 0.5)
// Clamp to [0,1] - this operation is free under certain circumstances.
// For further information see
// http://www.humus.name/Articles/Persson_LowLevelThinking.pdf and
// http://www.humus.name/Articles/Persson_LowlevelShaderOptimization.pdf
#define saturate(x) clamp(x, 0, 1)
// Sign function that doesn't return 0
float sgn(float x) {
return (x<0)?-1:1;
}
float2 sgn(float2 v) {
return float2((v.x<0)?-1:1, (v.y<0)?-1:1);
}
float square (float x) {
return x*x;
}
float2 square (float2 x) {
return x*x;
}
float3 square (float3 x) {
return x*x;
}
float lengthSqr(float3 x) {
return dot(x, x);
}
// Maximum/minumum elements of a vector
float vmax(float2 v) {
return max(v.x, v.y);
}
float vmax(float3 v) {
return max(max(v.x, v.y), v.z);
}
float vmax(float4 v) {
return max(max(v.x, v.y), max(v.z, v.w));
}
float vmin(float2 v) {
return min(v.x, v.y);
}
float vmin(float3 v) {
return min(min(v.x, v.y), v.z);
}
float vmin(float4 v) {
return min(min(v.x, v.y), min(v.z, v.w));
}
////////////////////////////////////////////////////////////////
//
// PRIMITIVE DISTANCE FUNCTIONS
//
////////////////////////////////////////////////////////////////
//
// Conventions:
//
// Everything that is a distance function is called fSomething.
// The first argument is always a point in 2 or 3-space called <p>.
// Unless otherwise noted, (if the object has an intrinsic "up"
// side or direction) the y axis is "up" and the object is
// centered at the origin.
//
////////////////////////////////////////////////////////////////
float fSphere(float3 p, float r) {
return length(p) - r;
}
// Plane with normal n (n is normalized) at some distance from the origin
float fPlane(float3 p, float3 n, float distanceFromOrigin) {
return dot(p, n) + distanceFromOrigin;
}
// Cheap Box: distance to corners is overestimated
float fBoxCheap(float3 p, float3 b) { //cheap box
return vmax(abs(p) - b);
}
// Box: correct distance to corners
float fBox(float3 p, float3 b) {
float3 d = abs(p) - b;
return length(max(d, float3(0,0,0))) + vmax(min(d, float3(0,0,0)));
}
// Same as above, but in two dimensions (an endless box)
float fBox2Cheap(float2 p, float2 b) {
return vmax(abs(p)-b);
}
float fBox2(float2 p, float2 b) {
float2 d = abs(p) - b;
return length(max(d, float2(0,0))) + vmax(min(d, float2(0,0)));
}
// Endless "corner"
float fCorner (float2 p) {
return length(max(p, float2(0,0))) + vmax(min(p, float2(0,0)));
}
// Blobby ball object. You've probably seen it somewhere. This is not a correct distance bound, beware.
float fBlob(float3 p) {
p = abs(p);
if (p.x < max(p.y, p.z)) p = p.yzx;
if (p.x < max(p.y, p.z)) p = p.yzx;
float b = max(max(max(
dot(p, normalize(float3(1, 1, 1))),
dot(p.xz, normalize(float2(PHI+1, 1)))),
dot(p.yx, normalize(float2(1, PHI)))),
dot(p.xz, normalize(float2(1, PHI))));
float l = length(p);
return l - 1.5 - 0.2 * (1.5 / 2)* cos(min(sqrt(1.01 - b / l)*(PI / 0.25), PI));
}
// Cylinder standing upright on the xz plane
float fCylinder(float3 p, float r, float height) {
float d = length(p.xz) - r;
d = max(d, abs(p.y) - height);
return d;
}
// Capsule: A Cylinder with round caps on both sides
float fCapsule(float3 p, float r, float c) {
return lerp(length(p.xz) - r, length(float3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
}
// Distance to line segment between <a> and <b>, used for fCapsule() version 2below
float fLineSegment(float3 p, float3 a, float3 b) {
float3 ab = b - a;
float t = saturate(dot(p - a, ab) / dot(ab, ab));
return length((ab*t + a) - p);
}
// Capsule version 2: between two end points <a> and <b> with radius r
float fCapsule(float3 p, float3 a, float3 b, float r) {
return fLineSegment(p, a, b) - r;
}
// Torus in the XZ-plane
float fTorus(float3 p, float smallRadius, float largeRadius) {
return length(float2(length(p.xz) - largeRadius, p.y)) - smallRadius;
}
// A circle line. Can also be used to make a torus by subtracting the smaller radius of the torus.
float fCircle(float3 p, float r) {
float l = length(p.xz) - r;
return length(float2(p.y, l));
}
// A circular disc with no thickness (i.e. a cylinder with no height).
// Subtract some value to make a flat disc with rounded edge.
float fDisc(float3 p, float r) {
float l = length(p.xz) - r;
return l < 0 ? abs(p.y) : length(float2(p.y, l));
}
// Hexagonal prism, circumcircle variant
float fHexagonCircumcircle(float3 p, float2 h) {
float3 q = abs(p);
return max(q.y - h.y, max(q.x*sqrt(3)*0.5 + q.z*0.5, q.z) - h.x);
//this is mathematically equivalent to this line, but less efficient:
//return max(q.y - h.y, max(dot(float2(cos(PI/3), sin(PI/3)), q.zx), q.z) - h.x);
}
// Hexagonal prism, incircle variant
float fHexagonIncircle(float3 p, float2 h) {
return fHexagonCircumcircle(p, float2(h.x*sqrt(3)*0.5, h.y));
}
// Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
float fCone(float3 p, float radius, float height) {
float2 q = float2(length(p.xz), p.y);
float2 tip = q - float2(0, height);
float2 mantleDir = normalize(float2(height, radius));
float mantle = dot(tip, mantleDir);
float d = max(mantle, -q.y);
float projected = dot(tip, float2(mantleDir.y, -mantleDir.x));
// distance to tip
if ((q.y > height) && (projected < 0)) {
d = max(d, length(tip));
}
// distance to base ring
if ((q.x > radius) && (projected > length(float2(height, radius)))) {
d = max(d, length(q - float2(radius, 0)));
}
return d;
}
//
// "Generalized Distance Functions" by Akleman and Chen.
// see the Paper at https://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/papers/sm99.pdf
//
// This set of constants is used to construct a large variety of geometric primitives.
// Indices are shifted by 1 compared to the paper because we start counting at Zero.
// Some of those are slow whenever a driver decides to not unroll the loop,
// which seems to happen for fIcosahedron und fTruncatedIcosahedron on nvidia 350.12 at least.
// Specialized implementations can well be faster in all cases.
//
const float3 GDFVectors[19] =
{
normalize(float3(1, 0, 0)),
normalize(float3(0, 1, 0)),
normalize(float3(0, 0, 1)),
normalize(float3(1, 1, 1 )),
normalize(float3(-1, 1, 1)),
normalize(float3(1, -1, 1)),
normalize(float3(1, 1, -1)),
normalize(float3(0, 1, PHI+1)),
normalize(float3(0, -1, PHI+1)),
normalize(float3(PHI+1, 0, 1)),
normalize(float3(-PHI-1, 0, 1)),
normalize(float3(1, PHI+1, 0)),
normalize(float3(-1, PHI+1, 0)),
normalize(float3(0, PHI, 1)),
normalize(float3(0, -PHI, 1)),
normalize(float3(1, 0, PHI)),
normalize(float3(-1, 0, PHI)),
normalize(float3(PHI, 1, 0)),
normalize(float3(-PHI, 1, 0))
};
// Version with variable exponent.
// This is slow and does not produce correct distances, but allows for bulging of objects.
float fGDF(float3 p, float r, float e, int begin, int end) {
float d = 0;
for (int i = begin; i <= end; ++i)
d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1/e) - r;
}
// Version with without exponent, creates objects with sharp edges and flat faces
float fGDF(float3 p, float r, int begin, int end) {
float d = 0;
for (int i = begin; i <= end; ++i)
d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
// Primitives follow:
float fOctahedron(float3 p, float r, float e) {
return fGDF(p, r, e, 3, 6);
}
float fDodecahedron(float3 p, float r, float e) {
return fGDF(p, r, e, 13, 18);
}
float fIcosahedron(float3 p, float r, float e) {
return fGDF(p, r, e, 3, 12);
}
float fTruncatedOctahedron(float3 p, float r, float e) {
return fGDF(p, r, e, 0, 6);
}
float fTruncatedIcosahedron(float3 p, float r, float e) {
return fGDF(p, r, e, 3, 18);
}
float fOctahedron(float3 p, float r) {
return fGDF(p, r, 3, 6);
}
float fDodecahedron(float3 p, float r) {
return fGDF(p, r, 13, 18);
}
float fIcosahedron(float3 p, float r) {
return fGDF(p, r, 3, 12);
}
float fTruncatedOctahedron(float3 p, float r) {
return fGDF(p, r, 0, 6);
}
float fTruncatedIcosahedron(float3 p, float r) {
return fGDF(p, r, 3, 18);
}
////////////////////////////////////////////////////////////////
//
// DOMAIN MANIPULATION OPERATORS
//
////////////////////////////////////////////////////////////////
//
// Conventions:
//
// Everything that modifies the domain is named pSomething.
//
// Many operate only on a subset of the three dimensions. For those,
// you must choose the dimensions that you want manipulated
// by supplying e.g. <p.x> or <p.zx>
//
// <inout p> is always the first argument and modified in place.
//
// Many of the operators partition space into cells. An identifier
// or cell index is returned, if possible. This return value is
// intended to be optionally used e.g. as a random seed to change
// parameters of the distance functions inside the cells.
//
// Unless stated otherwise, for cell index 0, <p> is unchanged and cells
// are centered on the origin so objects don't have to be moved to fit.
//
//
////////////////////////////////////////////////////////////////
float mod(float x, float y)
{
return x - y * floor(x/y);
}
// Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle <a>.
// Read like this: R(p.xz, a) rotates "x towards z".
// This is fast if <a> is a compile-time constant and slower (but still practical) if not.
void pR(inout float2 p, float a) {
p = cos(a)*p + sin(a)*float2(p.y, -p.x);
}
// Shortcut for 45-degrees rotation
void pR45(inout float2 p) {
p = (p + float2(p.y, -p.x))*sqrt(0.5);
}
// Repeat space along one axis. Use like this to repeat along the x axis:
// <float cell = pMod1(p.x,5);> - using the return value is optional.
float pMod1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p + halfsize, size) - halfsize;
return c;
}
// Same, but mirror every second cell so they match at the boundaries
float pModMirror1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p + halfsize,size) - halfsize;
p *= mod(c, 2.0)*2 - 1;
return c;
}
// Repeat the domain only in positive direction. Everything in the negative half-space is unchanged.
float pModSingle1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
if (p >= 0)
p = mod(p + halfsize, size) - halfsize;
return c;
}
// Repeat only a few times: from indices <start> to <stop> (similar to above, but more flexible)
float pModInterval1(inout float p, float size, float start, float stop) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p+halfsize, size) - halfsize;
if (c > stop) { //yes, this might not be the best thing numerically.
p += size*(c - stop);
c = stop;
}
if (c <start) {
p += size*(c - start);
c = start;
}
return c;
}
// Repeat around the origin by a fixed angle.
// For easier use, num of repetitions is use to specify the angle.
float pModPolar(inout float2 p, float repetitions) {
float angle = 2*PI/repetitions;
float a = atan2(p.x, p.y) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = float2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2)) c = abs(c);
return c;
}
// Repeat in two dimensions
float2 pMod2(inout float2 p, float2 size) {
float2 c = floor((p + size*0.5)/size);
p = fmod(p + size*0.5,size) - size*0.5;
return c;
}
// Same, but mirror every second cell so all boundaries match
float2 pModMirror2(inout float2 p, float2 size) {
float2 halfsize = size*0.5;
float2 c = floor((p + halfsize)/size);
p = fmod(p + halfsize, size) - halfsize;
p *= fmod(c,float2(2,2))*2 - float2(1,1);
return c;
}
// Same, but mirror every second cell at the diagonal as well
float2 pModGrid2(inout float2 p, float2 size) {
float2 c = floor((p + size*0.5)/size);
p = fmod(p + size*0.5, size) - size*0.5;
p *= fmod(c,float2(2,2))*2 - float2(1,1);
p -= size/2;
if (p.x > p.y) p.xy = p.yx;
return floor(c/2);
}
// Repeat in three dimensions
float3 pMod3(inout float3 p, float3 size) {
float3 c = floor((p + size*0.5)/size);
p = fmod(p + size*0.5, size) - size*0.5;
return c;
}
// Mirror at an axis-aligned plane which is at a specified distance <dist> from the origin.
float pMirror (inout float p, float dist) {
float s = sgn(p);
p = abs(p)-dist;
return s;
}
// Mirror in both dimensions and at the diagonal, yielding one eighth of the space.
// translate by dist before mirroring.
float2 pMirrorOctant (inout float2 p, float2 dist) {
float2 s = sgn(p);
pMirror(p.x, dist.x);
pMirror(p.y, dist.y);
if (p.y > p.x)
p.xy = p.yx;
return s;
}
// Reflect space at a plane
float pReflect(inout float3 p, float3 planeNormal, float offset) {
float t = dot(p, planeNormal)+offset;
if (t < 0) {
p = p - (2*t)*planeNormal;
}
return sgn(t);
}
////////////////////////////////////////////////////////////////
//
// OBJECT COMBINATION OPERATORS
//
////////////////////////////////////////////////////////////////
//
// We usually need the following boolean operators to combine two objects:
// Union: OR(a,b)
// Intersection: AND(a,b)
// Difference: AND(a,!b)
// (a and b being the distances to the objects).
//
// The trivial implementations are min(a,b) for union, max(a,b) for intersection
// and max(a,-b) for difference. To combine objects in more interesting ways to
// produce rounded edges, chamfers, stairs, etc. instead of plain sharp edges we
// can use combination operators. It is common to use some kind of "smooth minimum"
// instead of min(), but we don't like that because it does not preserve Lipschitz
// continuity in many cases.
//
// Naming convention: since they return a distance, they are called fOpSomething.
// The different flavours usually implement all the boolean operators above
// and are called fOpUnionRound, fOpIntersectionRound, etc.
//
// The basic idea: Assume the object surfaces intersect at a right angle. The two
// distances <a> and <b> constitute a new local two-dimensional coordinate system
// with the actual intersection as the origin. In this coordinate system, we can
// evaluate any 2D distance function we want in order to shape the edge.
//
// The operators below are just those that we found useful or interesting and should
// be seen as examples. There are infinitely more possible operators.
//
// They are designed to actually produce correct distances or distance bounds, unlike
// popular "smooth minimum" operators, on the condition that the gradients of the two
// SDFs are at right angles. When they are off by more than 30 degrees or so, the
// Lipschitz condition will no longer hold (i.e. you might get artifacts). The worst
// case is parallel surfaces that are close to each other.
//
// Most have a float argument <r> to specify the radius of the feature they represent.
// This should be much smaller than the object size.
//
// Some of them have checks like "if ((-a < r) && (-b < r))" that restrict
// their influence (and computation cost) to a certain area. You might
// want to lift that restriction or enforce it. We have left it as comments
// in some cases.
//
// usage example:
//
// float fTwoBoxes(float3 p) {
// float box0 = fBox(p, float3(1));
// float box1 = fBox(p-float3(1), float3(1));
// return fOpUnionChamfer(box0, box1, 0.2);
// }
//
////////////////////////////////////////////////////////////////
// The "Chamfer" flavour makes a 45-degree chamfered edge (the diagonal of a square of size <r>):
float fOpUnionChamfer(float a, float b, float r) {
return min(min(a, b), (a - r + b)*sqrt(0.5));
}
// Intersection has to deal with what is normally the inside of the resulting object
// when using union, which we normally don't care about too much. Thus, intersection
// implementations sometimes differ from union implementations.
float fOpIntersectionChamfer(float a, float b, float r) {
return max(max(a, b), (a + r + b)*sqrt(0.5));
}
// Difference can be built from Intersection or Union:
float fOpDifferenceChamfer (float a, float b, float r) {
return fOpIntersectionChamfer(a, -b, r);
}
// The "Round" variant uses a quarter-circle to join the two objects smoothly:
float fOpUnionRound(float a, float b, float r) {
float2 u = max(float2(r - a,r - b), float2(0,0));
return max(r, min (a, b)) - length(u);
}
float fOpIntersectionRound(float a, float b, float r) {
float2 u = max(float2(r + a,r + b), float2(0,0));
return min(-r, max (a, b)) + length(u);
}
float fOpDifferenceRound (float a, float b, float r) {
return fOpIntersectionRound(a, -b, r);
}
// The "Columns" flavour makes n-1 circular columns at a 45 degree angle:
float fOpUnionColumns(float a, float b, float r, float n) {
if ((a < r) && (b < r)) {
float2 p = float2(a, b);
float columnradius = r*sqrt(2)/((n-1)*2+sqrt(2));
pR45(p);
p.x -= sqrt(2)/2*r;
p.x += columnradius*sqrt(2);
if (mod(n,2) == 1) {
p.y += columnradius;
}
// At this point, we have turned 45 degrees and moved at a point on the
// diagonal that we want to place the columns on.
// Now, repeat the domain along this direction and place a circle.
pMod1(p.y, columnradius*2);
float result = length(p) - columnradius;
result = min(result, p.x);
result = min(result, a);
return min(result, b);
} else {
return min(a, b);
}
}
float fOpDifferenceColumns(float a, float b, float r, float n) {
a = -a;
float m = min(a, b);
//avoid the expensive computation where not needed (produces discontinuity though)
if ((a < r) && (b < r)) {
float2 p = float2(a, b);
float columnradius = r*sqrt(2)/n/2.0;
columnradius = r*sqrt(2)/((n-1)*2+sqrt(2));
pR45(p);
p.y += columnradius;
p.x -= sqrt(2)/2*r;
p.x += -columnradius*sqrt(2)/2;
if (mod(n,2) == 1) {
p.y += columnradius;
}
pMod1(p.y,columnradius*2);
float result = -length(p) + columnradius;
result = max(result, p.x);
result = min(result, a);
return -min(result, b);
} else {
return -m;
}
}
float fOpIntersectionColumns(float a, float b, float r, float n) {
return fOpDifferenceColumns(a,-b,r, n);
}
// The "Stairs" flavour produces n-1 steps of a staircase:
// much less stupid version by paniq
float fOpUnionStairs(float a, float b, float r, float n) {
float s = r/n;
float u = b-r;
return min(min(a,b), 0.5 * (u + a + abs ((mod (u - a + s, 2 * s)) - s)));
}
// We can just call Union since stairs are symmetric.
float fOpIntersectionStairs(float a, float b, float r, float n) {
return -fOpUnionStairs(-a, -b, r, n);
}
float fOpDifferenceStairs(float a, float b, float r, float n) {
return -fOpUnionStairs(-a, b, r, n);
}
// Similar to fOpUnionRound, but more lipschitz-y at acute angles
// (and less so at 90 degrees). Useful when fudging around too much
// by MediaMolecule, from Alex Evans' siggraph slides
float fOpUnionSoft(float a, float b, float r) {
float e = max(r - abs(a - b), 0);
return min(a, b) - e*e*0.25/r;
}
// produces a cylindical pipe that runs along the intersection.
// No objects remain, only the pipe. This is not a boolean operator.
float fOpPipe(float a, float b, float r) {
return length(float2(a, b)) - r;
}
// first object gets a v-shaped engraving where it intersect the second
float fOpEngrave(float a, float b, float r) {
return max(a, (a + r - abs(b))*sqrt(0.5));
}
// first object gets a capenter-style groove cut out
float fOpGroove(float a, float b, float ra, float rb) {
return max(a, min(a + ra, rb - abs(b)));
}
// first object gets a capenter-style tongue attached
float fOpTongue(float a, float b, float ra, float rb) {
return min(a, max(a - ra, abs(b) - rb));
}